From Post 895: iR³Pidgins for translation
The extension: Make it generative - observe any speaking style, extract patterns as nodes, generate new utterances matching that style
Result: Universal style transfer - speak like anyone after observing them
class IR3PidginsGenerative(IR3Pidgins):
"""
Generative extension of iR³Pidgins
Learn speaking styles as pattern graphs
Generate new utterances in learned styles
~200 additional lines
"""
def __init__(self, foundation):
super().__init__(foundation)
# Additional handlers for pattern learning
self._setup_generative_handlers()
def _setup_generative_handlers(self):
"""Set up pattern learning streams"""
# Observe utterances
self.dht.on_p2p_response(self._on_utterance_observed)
# Pattern discovery responses
self.dht.on_p2p_response(self._on_pattern_discovered)
Translation + Generation!
def observe_utterance(self, speaker, text, context):
"""Observe utterance and extract patterns (pure flux)"""
# Append observation to series
self.series.append({
'event': 'utterance_observed',
'speaker': speaker,
'text': text,
'context': context,
't': time.time()
})
# Extract patterns locally
patterns = self._extract_patterns(text, context)
# Store pattern nodes
for pattern in patterns:
self.series.append({
'event': 'pattern_extracted',
'speaker': speaker,
'pattern_type': pattern['type'],
'pattern_data': pattern['data'],
't': time.time()
})
# Broadcast to network (others learn too)
self.dht.push_intent({
'intent': 'share_pattern',
'speaker': speaker,
'patterns': patterns
})
# Return immediately
return
def _extract_patterns(self, text, context):
"""Extract speaking patterns from text"""
patterns = []
# Rhythm pattern
words = text.split()
patterns.append({
'type': 'rhythm',
'data': {
'avg_word_length': sum(len(w) for w in words) / len(words),
'sentence_length': len(words),
'punctuation': self._count_punctuation(text)
}
})
# Formality pattern
patterns.append({
'type': 'formality',
'data': {
'contractions': self._has_contractions(text),
'formal_words': self._count_formal_words(words),
'slang_words': self._count_slang(words)
}
})
# Idiom pattern
idioms = self._find_idioms(text)
if idioms:
patterns.append({
'type': 'idiom',
'data': {'idioms': idioms}
})
# Word choice pattern
patterns.append({
'type': 'word_choice',
'data': {
'unique_words': list(set(words)),
'repeated_words': self._find_repetitions(words)
}
})
return patterns
Patterns extracted as nodes!
def build_speaker_profile(self, speaker):
"""Build complete profile graph for speaker"""
# Derive all observations for this speaker
graph = self.derive_language_graph()
observations = [
e for e in self.series.get_all()
if e.get('event') == 'utterance_observed'
and e.get('speaker') == speaker
]
patterns = [
e for e in self.series.get_all()
if e.get('event') == 'pattern_extracted'
and e.get('speaker') == speaker
]
# Build profile
profile = {
'speaker': speaker,
'observations': len(observations),
'patterns': {
'rhythm': [],
'formality': [],
'idioms': [],
'word_choice': []
}
}
# Aggregate patterns
for p in patterns:
pattern_type = p['pattern_type']
if pattern_type in profile['patterns']:
profile['patterns'][pattern_type].append(p['pattern_data'])
# Compute averages/modes
profile['style_summary'] = self._summarize_style(profile['patterns'])
return profile
Speaker profile = aggregated pattern nodes!
def generate_utterance(self, meaning, speaker_style):
"""Generate utterance matching speaker's style (pure flux)"""
# Get speaker profile
profile = self.build_speaker_profile(speaker_style)
# Get base translation
base_words = self._meaning_to_words(meaning)
# Apply style patterns
styled_utterance = self._apply_style(base_words, profile)
# Append generation event
self.series.append({
'event': 'utterance_generated',
'meaning': meaning,
'style': speaker_style,
'output': styled_utterance,
't': time.time()
})
# Broadcast (others can critique/learn)
self.dht.push_intent({
'intent': 'generated_utterance',
'style': speaker_style,
'output': styled_utterance,
'requester': self.address
})
# Return immediately
return styled_utterance
def _apply_style(self, base_words, profile):
"""Apply speaker style to base words"""
styled = base_words.copy()
# Apply rhythm
rhythm = profile['style_summary']['rhythm']
styled = self._adjust_rhythm(styled, rhythm)
# Apply formality
formality = profile['style_summary']['formality']
if formality == 'informal':
styled = self._add_contractions(styled)
styled = self._use_slang(styled, profile)
elif formality == 'formal':
styled = self._expand_contractions(styled)
styled = self._use_formal_words(styled)
# Apply idioms
idioms = profile['style_summary']['idioms']
styled = self._insert_idioms(styled, idioms)
# Apply word choice
word_prefs = profile['style_summary']['word_preferences']
styled = self._substitute_preferred_words(styled, word_prefs)
return ' '.join(styled)
Generation guided by pattern graph!
# Example 1: Formal academic style
pidgins.observe_utterance(
speaker='professor',
text='One must consider the implications of this phenomenon.',
context='lecture'
)
# Example 2: Casual friend style
pidgins.observe_utterance(
speaker='friend',
text="Yo, that's crazy! Didn't see that coming.",
context='chat'
)
# Example 3: Child style
pidgins.observe_utterance(
speaker='child',
text='I wanna go play! Can we? Please please please!',
context='request'
)
# After multiple observations, generate in each style:
# Generate formal
formal = pidgins.generate_utterance(
meaning='want_play',
speaker_style='professor'
)
# → "One would desire recreational activity."
# Generate casual
casual = pidgins.generate_utterance(
meaning='want_play',
speaker_style='friend'
)
# → "Wanna hang out? Let's do something fun!"
# Generate child
child = pidgins.generate_utterance(
meaning='want_play',
speaker_style='child'
)
# → "I wanna play! Can we play? Please!"
Same meaning, different styles!
# Rhythm patterns
rhythm_node = {
'type': 'pattern',
'pattern_type': 'rhythm',
'speaker': 'shakespeare',
'data': {
'iambic_pentameter': True,
'avg_syllables_per_line': 10,
'stress_pattern': 'unstressed-stressed'
}
}
# Vocabulary patterns
vocab_node = {
'type': 'pattern',
'pattern_type': 'vocabulary',
'speaker': 'scientist',
'data': {
'technical_terms': ['hypothesis', 'methodology', 'empirical'],
'avoid_words': ['think', 'feel', 'maybe'],
'prefer_words': ['posit', 'observe', 'potentially']
}
}
# Syntax patterns
syntax_node = {
'type': 'pattern',
'pattern_type': 'syntax',
'speaker': 'yoda',
'data': {
'word_order': 'OSV', # Object-Subject-Verb
'inversion_frequency': 0.8
}
}
# Idiom patterns
idiom_node = {
'type': 'pattern',
'pattern_type': 'idiom',
'speaker': 'grandma',
'data': {
'common_idioms': [
'back in my day',
'when I was your age',
'bless your heart'
],
'usage_frequency': 0.3
}
}
Every aspect as nodes!
def transfer_style(self, text, from_speaker, to_speaker):
"""Transfer utterance from one style to another (pure flux)"""
# Extract meaning from source text
meaning = self._extract_meaning(text, from_speaker)
# Generate in target style
output = self.generate_utterance(meaning, to_speaker)
# Append transfer event
self.series.append({
'event': 'style_transferred',
'input': text,
'from_style': from_speaker,
'to_style': to_speaker,
'output': output,
't': time.time()
})
# Return immediately
return output
# Example: Transfer Shakespeare to modern casual
modern = pidgins.transfer_style(
text="To be, or not to be, that is the question",
from_speaker='shakespeare',
to_speaker='teenager'
)
# → "So like, should I exist or nah? That's what I'm trying to figure out."
# Transfer child to formal
formal = pidgins.transfer_style(
text="I wanna cookie NOW!",
from_speaker='child',
to_speaker='professor'
)
# → "One would appreciate immediate access to a biscuit."
Universal style transfer!
def query_speaker_style(self, speaker_name):
"""Query network for speaker style patterns (pure flux)"""
# Broadcast query
self.dht.push_intent({
'intent': 'query_speaker_style',
'speaker': speaker_name,
'requester': self.address
})
# Append query
self.series.append({
'event': 'style_query',
'speaker': speaker_name,
't': time.time()
})
# Return immediately
# Patterns will flow in via P2P
return
def share_learned_patterns(self, speaker):
"""Share learned patterns with network"""
# Build profile
profile = self.build_speaker_profile(speaker)
# Convert to chunks for BT
chunks = self._profile_to_chunks(profile)
# Store and announce
for chunk_id, chunk_data in chunks.items():
self.bt.store_chunk(chunk_id, chunk_data)
self.dht.push_intent({
'intent': 'announce_style_chunk',
'speaker': speaker,
'chunk_id': chunk_id
})
# Return immediately
return
Collective style learning!
def generate_variations(self, meaning, speaker_style, n=5):
"""Generate multiple variations in same style"""
variations = []
profile = self.build_speaker_profile(speaker_style)
# Generate n different variations
for i in range(n):
# Use different pattern combinations
variation = self._apply_style_variant(
meaning,
profile,
randomness=0.2 # Small variations
)
variations.append(variation)
# Append to series
self.series.append({
'event': 'variation_generated',
'meaning': meaning,
'style': speaker_style,
'variation': i,
'output': variation,
't': time.time()
})
return variations
# Example: Generate 5 ways to say "hello" like friend
variations = pidgins.generate_variations(
meaning='greeting',
speaker_style='friend',
n=5
)
# → ["Hey!", "Yo!", "What's up?", "Sup?", "Heyyy!"]
Multiple valid generations!
def converse(self, message, speaker_style, context):
"""Have conversation adapting to style in real-time"""
# Observe incoming message (learn patterns)
self.observe_utterance(
speaker='interlocutor',
text=message,
context=context
)
# Extract meaning
meaning = self._understand_message(message)
# Generate response in desired style
response = self.generate_utterance(
meaning=self._formulate_response(meaning),
speaker_style=speaker_style
)
# Observe own output (reinforce patterns)
self.observe_utterance(
speaker=speaker_style,
text=response,
context=context
)
# Return immediately
return response
# Example: Mimic speaking partner
conversation = []
for user_message in user_inputs:
# Learn from user, respond in their style
response = pidgins.converse(
message=user_message,
speaker_style='user', # Mimic user's style
context='chat'
)
conversation.append(response)
Adaptive conversation!
# Initialize
foundation = iR3Alpha()
pidgins = IR3PidginsGenerative(foundation)
# Phase 1: Observe multiple speakers
observations = [
('poet', 'The moon whispers secrets to the silent night.', 'poetry'),
('poet', 'Stars dance while dreams take flight.', 'poetry'),
('coder', 'Function returns null. Debug that.', 'code_review'),
('coder', 'Refactor this. Too much nesting.', 'code_review'),
]
for speaker, text, context in observations:
pidgins.observe_utterance(speaker, text, context)
# Phase 2: Build profiles (derive from series)
poet_profile = pidgins.build_speaker_profile('poet')
coder_profile = pidgins.build_speaker_profile('coder')
# Phase 3: Generate in learned styles
poem = pidgins.generate_utterance(
meaning='sun_rises',
speaker_style='poet'
)
# → "Golden rays embrace the waking world."
code_comment = pidgins.generate_utterance(
meaning='sun_rises',
speaker_style='coder'
)
# → "Sun status: true. Day initialized."
# Phase 4: Transfer styles
poetic_code = pidgins.transfer_style(
text="Function returns null. Debug that.",
from_speaker='coder',
to_speaker='poet'
)
# → "The function yields emptiness, a void that begs correction."
# All pure flux, no blocking!
Complete generative pipeline!
# Translation (post 895):
translation = pidgins.query_translation('chat', 'french', 'english')
# → "cat"
# Generation (post 896):
# Can express SAME meaning in infinite ways:
meanings = ['greeting', 'farewell', 'agreement']
styles = ['formal', 'casual', 'poetic', 'technical']
for meaning in meanings:
for style in styles:
utterance = pidgins.generate_utterance(meaning, style)
print(f"{style} {meaning}: {utterance}")
# Output:
# formal greeting: Good day to you.
# casual greeting: Hey!
# poetic greeting: Greetings, kindred spirit!
# technical greeting: Initiating social interaction protocol.
# ... etc
Infinite expression space!
# 1. Accessibility: Speak like anyone
deaf_person_voice = pidgins.build_speaker_profile('user_voice_sample')
text = pidgins.generate_utterance('hello', 'user_voice_sample')
# Generate speech in their voice
# 2. Language learning: Practice with native patterns
native_style = pidgins.build_speaker_profile('native_speaker')
practice_sentence = pidgins.generate_utterance('want_coffee', 'native_speaker')
# Learn how natives actually speak
# 3. Writing assistance: Match author style
hemingway_style = pidgins.build_speaker_profile('hemingway')
continuation = pidgins.generate_utterance('man_walks', 'hemingway')
# Write like Hemingway
# 4. Communication bridge: Adapt to audience
child_version = pidgins.transfer_style(technical_doc, 'scientist', 'child')
# Explain complex things simply
# 5. Preservation: Capture speaking patterns
elder_patterns = pidgins.build_speaker_profile('village_elder')
# Preserve unique dialects/styles
iR³Pidgins Generative Extension:
├─ Pattern extraction (~80 lines)
│ ├─ observe_utterance()
│ ├─ _extract_patterns()
│ └─ Pattern types
│
├─ Profile building (~50 lines)
│ ├─ build_speaker_profile()
│ └─ _summarize_style()
│
├─ Generation (~70 lines)
│ ├─ generate_utterance()
│ ├─ _apply_style()
│ └─ Style application functions
│
└─ Distribution (~30 lines)
├─ query_speaker_style()
└─ share_learned_patterns()
Additional: ~230 lines
Total with base: ~530 lines
Still compact, fully generative!
Base (from post 895):
- Translation between languages
- Universal concept discovery
- Pidgin emergence
- ~300 lines
Generative extension:
- Observe speaking patterns
- Build speaker style graphs
- Generate in learned styles
- Transfer across styles
- ~230 additional lines
Pattern types:
- Rhythm (word length, sentence structure)
- Formality (contractions, technical terms)
- Idioms (common phrases)
- Word choice (preferences, repetitions)
- Syntax (word order, constructions)
Key capabilities:
Pure flux throughout:
From Post 895: iR³Pidgins translation
This post: iR³Pidgins Generative - universal style transfer, ~530 lines total
∞
Date: 2026-02-19
Topic: Generative Language via Pattern Graphs
Architecture: Observation → Pattern extraction → Style-aware generation
Status: 📚 Translation → 🎨 Style Learning → 💬 Generative Communication
∞