From Post 878: iR³ pure flux foundation
From Post 830: Language as node graphs
From Post 893: Local apps in meatspace
The app: iR³Pidgins = Language processing using pure flux architecture
Result: Universal communication via distributed language graphs, ~300 lines
class IR3Pidgins:
"""
Universal language app on iR³ foundation
~300 lines of code
Language as node graphs + pure flux
"""
def __init__(self, foundation):
# Connect to iR³ foundation
self.series = foundation.series
self.dht = foundation.dht
self.bt = foundation.bt
# Register async handlers
self._setup_handlers()
def _setup_handlers(self):
"""Set up event streams"""
# Handle language query responses
self.dht.on_p2p_response(self._on_language_response)
# Handle language data chunks
self.bt.on_chunk_received(self._on_language_chunk)
Pure flux + node graphs!
def add_phoneme(self, sound, language):
"""Add phoneme node (pure flux)"""
# Append to series (immediate)
self.series.append({
'event': 'phoneme_added',
'type': 'phoneme',
'sound': sound,
'language': language,
't': time.time(),
'heard_count': 0,
'produced_count': 0,
'links': []
})
# Return immediately (no blocking)
return
def add_word(self, text, meaning, language, phonemes):
"""Add word node (pure flux)"""
# Append to series (immediate)
self.series.append({
'event': 'word_added',
'type': 'word',
'text': text,
'meaning': meaning,
'language': language,
't': time.time(),
'phonemes': phonemes, # Links to phoneme nodes
'encounters': 0,
'known': False,
'links': []
})
# Return immediately (no blocking)
return
def add_grammar_pattern(self, pattern, language, examples):
"""Add grammar node (pure flux)"""
# Append to series (immediate)
self.series.append({
'event': 'grammar_added',
'type': 'grammar',
'pattern': pattern,
'language': language,
't': time.time(),
'examples': examples,
'confidence': 0.0,
'links': []
})
# Return immediately (no blocking)
return
All language nodes stored in series!
def query_translation(self, word, from_lang, to_lang):
"""Query translation (pure flux)"""
# Push intent to DHT (fire & forget)
self.dht.push_intent({
'intent': 'translate_word',
'word': word,
'from_language': from_lang,
'to_language': to_lang,
'requester': self.address
})
# Append query to series
self.series.append({
'event': 'translation_query',
'word': word,
'from': from_lang,
'to': to_lang,
't': time.time()
})
# Return immediately (NO WAITING)
return
def query_universal_concept(self, concept):
"""Query universal concept across languages"""
# Broadcast to network
self.dht.push_intent({
'intent': 'find_universal',
'concept': concept,
'requester': self.address
})
# Append to series
self.series.append({
'event': 'universal_query',
'concept': concept,
't': time.time()
})
# Return immediately
return
Fire & forget queries!
def _on_language_response(self, data):
"""Async handler for language responses"""
response_type = data.get('type')
if response_type == 'translation':
# Append translation to series
self.series.append({
'event': 'translation_received',
'word': data['word'],
'from_lang': data['from_language'],
'to_lang': data['to_language'],
'translation': data['translation'],
't': time.time(),
'from_node': data['from_node']
})
elif response_type == 'universal_concept':
# Append universal concept
self.series.append({
'event': 'universal_concept_received',
'concept': data['concept'],
'words': data['words'], # Words in each language
't': time.time()
})
elif response_type == 'pidgin_word':
# Append pidgin word
self.series.append({
'event': 'pidgin_word_received',
'pidgin': data['pidgin_word'],
'meaning': data['meaning'],
'source_languages': data['sources'],
't': time.time()
})
# All handled async (no blocking anywhere)
Responses flow into series!
def derive_language_graph(self, language=None):
"""Derive language graph from series"""
# Get all events
events = self.series.get_all()
# Build graph by reducing events
graph = {
'phonemes': [],
'words': [],
'grammar': [],
'universal_concepts': [],
'pidgin': []
}
for event in events:
event_type = event.get('event')
if event_type == 'phoneme_added':
if language is None or event['language'] == language:
graph['phonemes'].append({
'sound': event['sound'],
'language': event['language'],
'heard': event['heard_count'],
'produced': event['produced_count']
})
elif event_type == 'word_added':
if language is None or event['language'] == language:
graph['words'].append({
'text': event['text'],
'meaning': event['meaning'],
'language': event['language'],
'phonemes': event['phonemes'],
'known': event['known']
})
elif event_type == 'grammar_added':
if language is None or event['language'] == language:
graph['grammar'].append({
'pattern': event['pattern'],
'language': event['language'],
'examples': event['examples']
})
elif event_type == 'universal_concept_received':
graph['universal_concepts'].append({
'concept': event['concept'],
'words': event['words']
})
elif event_type == 'pidgin_word_received':
graph['pidgin'].append({
'text': event['pidgin'],
'meaning': event['meaning'],
'sources': event['source_languages']
})
return graph
State derived from series (fast)!
def speak_pidgin(self, intent, context=None):
"""Speak using pidgin (pure flux)"""
# Derive current pidgin state
graph = self.derive_language_graph()
pidgin_words = graph['pidgin']
# Find pidgin words for intent
words = self._find_pidgin_words(intent, pidgin_words)
# Broadcast via DHT
self.dht.push_intent({
'intent': 'pidgin_communication',
'words': words,
'meaning': intent,
'requester': self.address
})
# Append to series
self.series.append({
'event': 'pidgin_spoken',
'words': words,
'intent': intent,
't': time.time()
})
# Return immediately
return
def understand_pidgin(self, pidgin_words):
"""Understand pidgin from any speaker"""
# Derive pidgin graph
graph = self.derive_language_graph()
# Match pidgin words to meanings
meanings = []
for word in pidgin_words:
pidgin_nodes = [
p for p in graph['pidgin']
if p['text'] == word
]
if pidgin_nodes:
meanings.append(pidgin_nodes[0]['meaning'])
# Append understanding to series
self.series.append({
'event': 'pidgin_understood',
'words': pidgin_words,
'meanings': meanings,
't': time.time()
})
return meanings
Universal communication via pidgin!
def share_language_data(self, language):
"""Share language graph as chunks"""
# Derive language graph
graph = self.derive_language_graph(language)
# Convert to chunks
chunks = self._graph_to_chunks(graph, language)
# Store chunks in BitTorrent
for chunk_id, chunk_data in chunks.items():
self.bt.store_chunk(chunk_id, chunk_data)
# Announce via DHT
self.dht.push_intent({
'intent': 'announce_language_chunk',
'chunk_id': chunk_id,
'language': language,
'holder': self.address
})
# Append to series
self.series.append({
'event': 'language_shared',
'language': language,
'chunks': len(chunks),
't': time.time()
})
# Return immediately
return
def request_language_data(self, language):
"""Request language data from network"""
# Push want language chunks
self.dht.push_intent({
'intent': 'want_language_data',
'language': language,
'requester': self.address
})
# Append to series
self.series.append({
'event': 'language_data_requested',
'language': language,
't': time.time()
})
# Return immediately
# Data will flow in via P2P
return
def _on_language_chunk(self, chunk):
"""Async handler for language chunks"""
# Append chunk to series
self.series.append({
'event': 'language_chunk_received',
'chunk_id': chunk['id'],
'data': chunk['data'],
't': time.time()
})
# No blocking
Language distributed via BitTorrent!
def discover_universal_concepts(self):
"""Find concepts present in ALL languages (pure flux)"""
# Derive complete graph (all languages)
graph = self.derive_language_graph()
# Get all unique meanings across all languages
all_meanings = set()
for word in graph['words']:
all_meanings.add(word['meaning'])
# For each meaning, check if it exists in ALL languages
for meaning in all_meanings:
# Broadcast query to see how many languages have this
self.dht.push_intent({
'intent': 'check_universal',
'meaning': meaning,
'requester': self.address
})
# Append discovery attempt
self.series.append({
'event': 'universal_discovery_started',
'meanings_checked': len(all_meanings),
't': time.time()
})
# Return immediately
# Responses will flow in async
# Concepts present in ALL languages = universal!
return
Universal concepts discovered via DHT!
def create_pidgin_word(self, concept, translations):
"""Create pidgin word from translations"""
# Choose simplest form
pidgin_word = min(translations.values(), key=len)
# Append to series (immediate)
self.series.append({
'event': 'pidgin_word_created',
'pidgin': pidgin_word,
'concept': concept,
'translations': translations,
't': time.time()
})
# Broadcast to network
self.dht.push_intent({
'intent': 'announce_pidgin',
'pidgin_word': pidgin_word,
'concept': concept,
'sources': list(translations.keys())
})
# Return immediately
return
Pidgin emerges and propagates!
# Initialize app on iR³ foundation
foundation = iR3Alpha()
pidgins = IR3Pidgins(foundation)
# Learn French phonemes (immediate)
pidgins.add_phoneme('ʁ', 'french')
pidgins.add_phoneme('ʃ', 'french')
pidgins.add_phoneme('a', 'french')
# Learn French word (immediate)
pidgins.add_word('chat', 'cat', 'french', ['ʃ', 'a'])
# Learn Spanish word (immediate)
pidgins.add_word('gato', 'cat', 'spanish', ['g', 'a', 't', 'o'])
# Query translation (fire & forget)
pidgins.query_translation('chat', 'french', 'spanish')
# → Returns immediately
# Later... derive state
graph = pidgins.derive_language_graph()
print(f"French words: {len(graph['words'])}")
# Query universal concepts (fire & forget)
pidgins.discover_universal_concepts()
# → Returns immediately
# Responses flow in asynchronously via handlers
# No waiting! Just check state when needed
# Later in your event loop or UI update:
graph = pidgins.derive_language_graph()
print(f"Universal concepts: {len(graph['universal_concepts'])}")
print(f"Pidgin words: {len(graph['pidgin'])}")
# Speak using pidgin (fire & forget)
pidgins.speak_pidgin('want_food')
# → Returns immediately
# No blocking anywhere!
Pure flux language learning!
# Node B has French/Spanish, responds to queries
@pidgins.dht.on_intent
def handle_language_intent(intent):
"""Handle incoming language queries"""
intent_type = intent.get('intent')
if intent_type == 'translate_word':
# Check if we know this translation
graph = pidgins.derive_language_graph()
# Find word in source language
source_word = next(
(w for w in graph['words']
if w['text'] == intent['word']
and w['language'] == intent['from_language']),
None
)
if source_word:
# Find translation in target language
target_word = next(
(w for w in graph['words']
if w['meaning'] == source_word['meaning']
and w['language'] == intent['to_language']),
None
)
if target_word:
# Send P2P response
pidgins.dht.respond_p2p(
to=intent['requester'],
data={
'type': 'translation',
'word': intent['word'],
'from_language': intent['from_language'],
'to_language': intent['to_language'],
'translation': target_word['text'],
'from_node': pidgins.address
}
)
elif intent_type == 'check_universal':
# Check if concept exists in our languages
graph = pidgins.derive_language_graph()
concept = intent['concept']
# Find words with this meaning
translations = {}
for word in graph['words']:
if word['meaning'] == concept:
translations[word['language']] = word['text']
if translations:
# Send P2P response
pidgins.dht.respond_p2p(
to=intent['requester'],
data={
'type': 'universal_concept',
'concept': concept,
'words': translations
}
)
Autonomous nodes helping!
# Traditional (blocking):
translations = []
for word in word_list:
translation = api.translate(word) # BLOCKS
translations.append(translation)
# Time: N * latency = SLOW
# iR³Pidgins (pure flux):
for word in word_list:
pidgins.query_translation(word, 'en', 'fr') # Immediate
# All queries "in flight" simultaneously
# Responses flow into series via async handlers
# Check state anytime from event loop or UI:
def on_ui_update():
graph = pidgins.derive_language_graph()
display_translations(graph['words'])
# No blocking, just derive state when needed
# Time: ~latency (parallel) = FAST
Benefits:
def sync_language_data(self):
"""Sync language data with network"""
# Get local language graph
local_graph = self.derive_language_graph()
# For each language known locally
for language in self._get_known_languages():
# Request updates from network
self.request_language_data(language)
# Share our data
self.share_language_data(language)
# All async (no blocking)
return
def _get_known_languages(self):
"""Get list of languages in local graph"""
graph = self.derive_language_graph()
languages = set()
for word in graph['words']:
languages.add(word['language'])
return list(languages)
Data syncs automatically!
# 1. Real-time translation
pidgins.query_translation('hello', 'english', 'mandarin')
# 2. Language learning
pidgins.add_word('bonjour', 'hello', 'french', ['b', 'o', 'ʒ', 'u', 'ʁ'])
pidgins.add_grammar_pattern('greeting', 'french', ['bonjour', 'salut'])
# 3. Cross-cultural communication
pidgins.speak_pidgin('want_buy_food') # Universal pidgin
pidgins.understand_pidgin(['mi', 'want', 'eat'])
# 4. Language preservation
pidgins.share_language_data('endangered_language')
# 5. Travel assistance
pidgins.discover_universal_concepts()
graph = pidgins.derive_language_graph()
essential_words = graph['pidgin'] # Use anywhere
# All pure flux, no blocking
iR³Pidgins Implementation:
├─ Core logic (~150 lines)
│ ├─ Add nodes (phoneme, word, grammar)
│ ├─ Query/response handling
│ └─ State derivation
│
├─ DHT integration (~50 lines)
│ ├─ Broadcast queries
│ └─ Handle intents
│
├─ BitTorrent integration (~50 lines)
│ ├─ Chunk storage
│ └─ Distribution
│
└─ Pidgin creation (~50 lines)
├─ Universal concept discovery
└─ Pidgin word generation
Total: ~300 lines of code
Compared to:
iR³Pidgins: 300 lines, pure flux, distributed!
Foundation:
Built on iR³ Alpha (post 878):
- iR³Series: Language nodes stored as events
- iR³DHT: Queries broadcast, responses P2P
- iR³BitTorrent: Language data distributed
Language Model (from post 830):
Language as node graph:
- Phoneme nodes (sounds)
- Word nodes (meanings + phonemes)
- Grammar nodes (patterns)
- Universal concept nodes (intersection)
- Pidgin nodes (emergent from universal)
Communication:
Query → DHT broadcast (1-to-many)
Response → P2P direct (1-to-1)
Data → BitTorrent (distributed)
All push-only (no blocking)
Key Features:
Applications:
From Post 878: iR³ foundation
From Post 830: Language as node graphs
From Post 893: Local apps architecture
This post: iR³Pidgins - Language on pure flux, ~300 lines, universal communication
∞
Date: 2026-02-19
Topic: iR³ Language Application
Architecture: Node graphs + Pure flux = Universal communication
Status: 📚 Language Processing → 🌍 Universal Communication → 💬 Pidgin Emergence
∞