From Post 878: iR³ Alpha pure flux architecture
From Post 870: Reputation via intent-based track record
From Post 877: Pure flux paradigm
The realization: Reputation app is ~100-500 lines on top of iR³ foundation (~1700 lines). Pure flux makes it trivial.
Result: Complete reputation system with zero blocking, push-only communication
class iR3Reputation:
"""
Reputation app using pure flux architecture
Built on top of iR³ foundation from post 878
Total code: ~300 lines
Foundation code: ~1700 lines (iR³Series, iR³DHT, iR³BitTorrent)
"""
def __init__(self, node_id):
self.node_id = node_id
# Use iR³Series for events
from ir3_series import iR3Series
self.reputation_series = iR3Series(f'reputation_{node_id}')
# Use iR³DHT for broadcast
from ir3_dht import iR3DHT
self.dht = iR3DHT()
# Use iR³BitTorrent for chunks
from ir3_bittorrent import iR3BitTorrent
self.bt = iR3BitTorrent()
# Rate limiters (from post 878)
self.rate_limiters = {
'w_tracking': 1.0, # Tracking bandwidth
'w_objective': 1.0, # Value ratio
'w_topology': 1.0 # Network load
}
That’s it! The foundation handles:
def record_reputation_event(self, event_type, **details):
"""
Record reputation event
Pure flux: append → push → done
No blocking, no waiting
"""
# 1. Append to series (push-only)
self.reputation_series.append({
'timestamp': time.time(),
'event_type': event_type,
'node_id': self.node_id,
**details
})
# 2. Push recent chunks to BitTorrent (async)
if len(self.reputation_series) % 10 == 0:
self._push_reputation_chunks()
# Done! No waiting, no blocking
# Events flow through pure flux channels
Example usage:
# Good action
reputation.record_reputation_event(
'ecosystem_improved',
territory='forest_A',
health_delta=+15,
timestamp=time.time()
)
# Bad action
reputation.record_reputation_event(
'ecosystem_degraded',
territory='forest_B',
health_delta=-10,
timestamp=time.time()
)
# Dispute resolved
reputation.record_reputation_event(
'dispute_resolved',
dispute_id='dispute_123',
outcome='consensus_reached',
timestamp=time.time()
)
Pure flux:
def _push_reputation_chunks(self):
"""
Push reputation chunks to network
Pure flux: broadcast intent → nodes respond async
"""
# Get recent events
recent = self.reputation_series.tail(10)
# Create chunk
chunk = {
'chunk_id': f'rep_{self.node_id}_{len(self.reputation_series)}',
'node_id': self.node_id,
'events': recent,
'timestamp': time.time()
}
# Broadcast intent to DHT (1-to-many)
self.dht.broadcast({
'type': 'store_reputation_chunk',
'chunk_id': chunk['chunk_id'],
'from': self.node_id
})
# BitTorrent nodes decide via rate limiters
# They'll respond via P2P (1-to-1) if they want to store
# NO WAITING HERE! Pure push.
What happens:
1. Node creates chunk
↓
2. Broadcasts to DHT (1-to-many)
↓
3. DHT forwards to all BT nodes
↓
4. Each BT node checks rate limiters:
- w_tracking: Do I have bandwidth?
- w_objective: Is this valuable?
- w_topology: Is network overloaded?
↓
5. BT nodes respond via P2P (1-to-1):
- HIGH limiters → "YES, stored"
- LOW limiters → "NO, rate limited"
- Offline → SILENCE
↓
6. Original node appends responses to series
↓
7. Done! No blocking anywhere.
def query_reputation(self, target_node_id):
"""
Query another node's reputation
Pure flux: broadcast query → collect responses async
"""
# 1. Broadcast query to DHT (1-to-many)
query_id = f'query_{self.node_id}_{time.time()}'
self.dht.broadcast({
'type': 'reputation_query',
'query_id': query_id,
'target_node': target_node_id,
'from': self.node_id
})
# 2. Append query to series (for audit trail)
self.reputation_series.append({
'timestamp': time.time(),
'event_type': 'reputation_query_sent',
'target_node': target_node_id,
'query_id': query_id
})
# 3. Set up response collector (async)
# Responses come back via P2P (1-to-1)
# This is non-blocking!
return query_id # Caller polls for responses
Response collection (async):
def collect_reputation_responses(self, query_id, timeout=5.0):
"""
Collect responses for reputation query
Non-blocking: check series for responses
"""
start = time.time()
responses = []
while time.time() - start < timeout:
# Check series for new responses
recent = self.reputation_series.tail(100)
for entry in recent:
if (entry.get('event_type') == 'reputation_response_received' and
entry.get('query_id') == query_id):
responses.append(entry)
# Found enough? Return early
if len(responses) >= 3:
break
# Yield to other tasks (pure flux!)
time.sleep(0.1)
return responses
Pure flux characteristics:
class BitTorrentReputationNode:
"""
BT node stores reputation chunks
Uses rate limiters from post 878
"""
def __init__(self):
self.stored_chunks = {}
self.rate_limiters = {
'w_tracking': 1.0,
'w_objective': 1.0,
'w_topology': 1.0
}
def handle_reputation_query(self, query):
"""
Respond to reputation query
Rate limiters decide if we respond
"""
target = query['target_node']
from_node = query['from']
# Do we have chunks for target?
my_chunks = [c for c in self.stored_chunks.values()
if c['node_id'] == target]
if not my_chunks:
# SILENCE (don't have data)
return None
# Check rate limiters
if self.rate_limiters['w_tracking'] < 0.3:
# NO (rate limited)
self._send_p2p_response(from_node, {
'type': 'reputation_response',
'query_id': query['query_id'],
'response': 'NO',
'reason': 'rate_limited',
'chunks_available': len(my_chunks)
})
return
# YES (send chunks via P2P)
self._send_p2p_response(from_node, {
'type': 'reputation_response',
'query_id': query['query_id'],
'response': 'YES',
'chunks': my_chunks,
'total_events': sum(len(c['events']) for c in my_chunks)
})
def _send_p2p_response(self, to_node, response):
"""
Send response via P2P (1-to-1)
Pure flux: push only, no blocking
"""
# Send directly to node (not via DHT)
p2p_send(to_node, response)
# Append to our series (audit trail)
self.series.append({
'timestamp': time.time(),
'event_type': 'reputation_response_sent',
'to_node': to_node,
'response_type': response['response']
})
Rate limiter logic:
def update_rate_limiters(self):
"""Update rate limiters based on system state"""
# Tracking: How much bandwidth do I have?
bandwidth_used = self.get_bandwidth_used()
self.rate_limiters['w_tracking'] = 1.0 - (bandwidth_used / MAX_BANDWIDTH)
# Objective: Is responding valuable?
query_value = self.estimate_query_value()
self.rate_limiters['w_objective'] = query_value
# Topology: Is network overloaded?
network_load = self.get_network_load()
self.rate_limiters['w_topology'] = 1.0 - (network_load / MAX_LOAD)
# Overall: Multiply limiters
self.overall_limiter = (self.rate_limiters['w_tracking'] *
self.rate_limiters['w_objective'] *
self.rate_limiters['w_topology'])
def derive_reputation(self, query_id):
"""
Derive reputation from collected responses
Multi-perspective view
"""
# Collect all responses
responses = self.collect_reputation_responses(query_id)
# Separate by type
yes_responses = [r for r in responses if r['response'] == 'YES']
no_responses = [r for r in responses if r['response'] == 'NO']
# SILENCE = no response in series
# Aggregate all chunks
all_events = []
for response in yes_responses:
for chunk in response['chunks']:
all_events.extend(chunk['events'])
# Count positive vs negative
positive = sum(1 for e in all_events
if e['event_type'] in [
'ecosystem_improved',
'dispute_resolved',
'consensus_matched'
])
negative = sum(1 for e in all_events
if e['event_type'] in [
'ecosystem_degraded',
'dispute_failed',
'consensus_missed'
])
total = positive + negative
if total == 0:
return {
'reputation': 0.5, # Neutral
'confidence': 'low',
'sources': 0
}
return {
'reputation': positive / total,
'confidence': 'high' if len(yes_responses) >= 2 else 'medium',
'sources': len(yes_responses),
'total_events': total,
'positive': positive,
'negative': negative,
'rate_limited': len(no_responses)
}
Example output:
{
'reputation': 0.85, # 85% positive
'confidence': 'high', # 3 sources
'sources': 3, # 3 BT nodes responded
'total_events': 127,
'positive': 108,
'negative': 19,
'rate_limited': 1 # 1 node had data but rate limited
}
# Alice does good work
alice = iR3Reputation('alice')
alice.record_reputation_event(
'ecosystem_improved',
territory='forest_A',
health_delta=+20
)
# → Appends to series (push)
# → Pushes chunks to BT network (async)
# → Done! No blocking
# BT nodes receive chunk push
# → Check rate limiters
# → HIGH limiters: Store chunk, respond YES
# → LOW limiters: Respond NO
# → Offline: SILENCE
# Bob queries Alice's reputation
bob = iR3Reputation('bob')
query_id = bob.query_reputation('alice')
# → Broadcasts to DHT (1-to-many)
# → Appends query to series
# → Returns query_id immediately (non-blocking!)
# BT nodes receive query (via DHT)
# → Each checks if has Alice's chunks
# → Each checks rate limiters
# → Responds via P2P (1-to-1) to Bob
# Bob collects responses (async)
time.sleep(2.0) # Give time for responses
reputation_data = bob.derive_reputation(query_id)
# → Reads responses from series
# → Aggregates chunks
# → Derives multi-perspective reputation
print(f"Alice reputation: {reputation_data['reputation']}")
# → 0.85 (from 3 sources, 127 events)
Pure flux throughout:
# Foundation (from post 878): ~1700 lines
iR3Series # ~500 lines
iR3DHT # ~600 lines
iR3BitTorrent # ~600 lines
# Reputation app: ~300 lines
class iR3Reputation:
__init__ # 15 lines
record_reputation_event # 12 lines
_push_reputation_chunks # 25 lines
query_reputation # 20 lines
collect_reputation_responses # 30 lines
derive_reputation # 40 lines
class BitTorrentReputationNode:
__init__ # 10 lines
handle_reputation_query # 35 lines
_send_p2p_response # 15 lines
update_rate_limiters # 30 lines
handle_storage_request # 40 lines
# Helper functions # 28 lines
Total: ~300 lines for complete reputation system!
Why so small?
benefits = {
# From pure flux
'no_blocking': 'All operations async',
'push_only': 'No request/response complexity',
'natural_backpressure': 'Rate limiters prevent overload',
'simple_code': '~300 lines total',
# From DHT broadcast
'efficient_queries': '1-to-many broadcast',
'no_centralization': 'Distributed DHT',
'censorship_resistant': 'No single point of control',
# From P2P responses
'direct_communication': 'Node-to-node',
'bandwidth_efficient': 'Only interested parties respond',
'privacy': 'Responses not broadcast',
# From series
'audit_trail': 'Complete history',
'verifiable': 'All events recorded',
'append_only': 'No mutation',
# From rate limiters
'natural_limits': 'No arbitrary throttling',
'adaptive': 'Responds to load',
'fair': 'Based on actual capacity',
# Overall
'scalable': 'No central bottleneck',
'reliable': 'Distributed storage',
'fast': 'No waiting',
'simple': 'Easy to understand'
}
def calculate_selection_weight(self, node_id, stake_eth):
"""
Calculate selection weight
Reputation dominates, stake amplifies
"""
# Query reputation via pure flux
query_id = self.query_reputation(node_id)
time.sleep(2.0) # Collect responses
rep_data = self.derive_reputation(query_id)
base_reputation = rep_data['reputation']
# Stake amplifies (logarithmic)
if stake_eth > 0:
stake_multiplier = 1 + 0.1 * math.log(stake_eth)
else:
stake_multiplier = 1.0
weight = base_reputation * stake_multiplier
return {
'weight': weight,
'reputation': base_reputation,
'stake': stake_eth,
'multiplier': stake_multiplier,
'confidence': rep_data['confidence']
}
Examples:
Alice: rep=0.9, stake=10 ETH
→ weight = 0.9 * 1.23 = 1.11
Bob: rep=0.3, stake=1000 ETH
→ weight = 0.3 * 1.69 = 0.51
Alice wins! Reputation dominates.
def handle_poor_performance(self, node_id):
"""
Natural consequences via reputation system
No punishment, no slashing
"""
# Bad action recorded
self.record_reputation_event(
'ecosystem_degraded',
node_id=node_id,
details='...'
)
# Pushed to network (pure flux)
# → Chunks updated in BT
# → Future queries reflect this
# Natural consequence:
# → Lower reputation in next query
# → Less likely selected
# → Economic incentive to improve
# NO slashing needed!
# NO arbitrary punishment!
# Market naturally responds to track record
Why this works:
Good actions → High reputation → Selected more → Earn more
Bad actions → Low reputation → Selected less → Earn less
Natural economic incentives guide behavior!
# Traditional (request/response)
❌ def get_reputation(node_id):
response = request_reputation(node_id) # BLOCKS
wait_for_response(response) # BLOCKS
return parse_response(response)
# Total: Complex, blocking, centralized
# Pure flux (iR³ Reputation)
✅ def query_reputation(node_id):
query_id = dht.broadcast({...}) # NON-BLOCKING
return query_id # IMMEDIATE
def collect_responses(query_id):
responses = series.tail(100) # READ SERIES
return filter_by_query_id(responses)
# Total: Simple, async, distributed
Key differences:
| Traditional | Pure Flux |
|---|---|
| Request/response | Broadcast/collect |
| Blocking calls | Non-blocking push |
| Central coordinator | Distributed DHT |
| Complex sync | Simple async |
| Single source | Multi-perspective |
| Timeout hell | Rate limiter heaven |
| ~3000 lines | ~300 lines |
def assess_confidence(self, reputation_data):
"""
Confidence based on number of sources
"""
sources = reputation_data['sources']
total_events = reputation_data['total_events']
if sources == 0:
return 'none'
elif sources == 1:
return 'low'
elif sources == 2:
return 'medium'
elif sources >= 3 and total_events >= 50:
return 'high'
elif sources >= 5 and total_events >= 100:
return 'very_high'
else:
return 'medium'
Example:
# Single source
{
'reputation': 0.9,
'sources': 1,
'total_events': 20,
'confidence': 'low' # Only 1 BT node
}
# Multiple sources
{
'reputation': 0.85,
'sources': 4,
'total_events': 150,
'confidence': 'high' # 4 BT nodes, 150 events
}
Multi-perspective matters!
# Scenario 1: High capacity BT node
bt_node_1 = {
'w_tracking': 0.9, # 90% bandwidth available
'w_objective': 0.8, # Query is valuable
'w_topology': 0.7, # Network not overloaded
'overall': 0.504 # 50.4% > threshold
}
→ Response: YES (stores chunk, sends data)
# Scenario 2: Overloaded BT node
bt_node_2 = {
'w_tracking': 0.2, # 20% bandwidth (low!)
'w_objective': 0.6, # Query somewhat valuable
'w_topology': 0.4, # Network busy
'overall': 0.048 # 4.8% < threshold
}
→ Response: NO (has data but rate limited)
# Scenario 3: No data BT node
bt_node_3 = {
'has_chunks': False # Doesn't have this node's data
}
→ Response: SILENCE (doesn't respond)
All responses are valid information!
timeline = {
'week_1': {
'events': 5,
'reputation': 0.5, # Neutral (new)
'confidence': 'low'
},
'month_1': {
'events': 30,
'reputation': 0.65, # Building
'confidence': 'medium'
},
'month_3': {
'events': 100,
'reputation': 0.75, # Good
'confidence': 'high'
},
'month_6': {
'events': 250,
'reputation': 0.82, # Very good
'confidence': 'high'
},
'year_1': {
'events': 600,
'reputation': 0.88, # Excellent
'confidence': 'very_high'
}
}
Can’t buy reputation, must earn through actions!
Foundation (post 878):
Reputation app:
Key insights:
Result:
From Post 878: iR³ Alpha pure flux foundation
From Post 877: Pure flux paradigm
From Post 870: Original reputation concept
This post: iR³Reputation - reputation system using pure flux architecture. ~300 lines on ~1700 line foundation. Complete, distributed, simple.
∞
Links:
Date: 2026-02-19
App: iR³Reputation
Code: ~300 lines (on ~1700 line foundation)
Status: 📊 Pure Flux Reputation → Multi-Perspective → Natural Selection
∞