From universal-model: Complete distributed system
Key insight: “Dame eso” = broadcast intention, not question
Result: YES, NO, SILENCE all valid → Multi-perspective truth
# Local node
class Node:
def __init__(self):
# ONLY series
self.series = [
{'t': time.time(), 'event': 'initialized'}
]
def declare_intent(self, want):
"""
Declare intention (not request!)
Broadcast via DHT
"""
# Declare to DHT: "I want X"
dht.broadcast_intent({
'from': self.address,
'intent': 'want_chunk',
'chunk_id': want
})
# Append declaration to MY series
self._append_series('declared_intent',
chunk_id=want,
broadcast_time=time.time())
# Wait for responses (or silence)
# Each response appended to series
Not:
❌ "Can you give me X?" (question)
❌ send_request(node, 'get', chunk_id)
But:
✅ "I want X" (declaration)
✅ dht.broadcast_intent(...)
Traditional (❌ wrong):
Node A → Node B: "Do you have chunk X?"
Node B → Node A: YES/NO
Intent-based (✅ correct):
Node A → DHT: "I WANT chunk:X"
DHT → [broadcast to all BT nodes]
BT Node 1: (decides) → ✅ "Here it is"
BT Node 2: (decides) → 🤷 [silence]
BT Node 3: (decides) → ❌ "I have it but rate limited"
BT Node 4: (decides) → 🤷 [silence]
Node A appends ALL outcomes to series:
{'response': 'yes', 'from': 'BT1', 'data': chunk}
{'response': 'silence', 'from': 'BT2'}
{'response': 'no', 'from': 'BT3', 'reason': 'rate_limited'}
{'response': 'silence', 'from': 'BT4'}
Key differences:
class IntentResponse:
"""All responses are valid data points"""
def process_responses(self, intent_id):
"""Collect all responses to intent"""
responses = {
'yes': [], # Nodes that provided
'no': [], # Nodes that refused
'silence': [] # Nodes that ignored
}
# Scan series for responses
for entry in self.series:
if entry.get('intent_id') == intent_id:
if entry['response'] == 'yes':
responses['yes'].append(entry)
elif entry['response'] == 'no':
responses['no'].append(entry)
elif entry['response'] == 'silence':
responses['silence'].append(entry)
return responses
def derive_insights(self, responses):
"""Each response type gives information"""
# YES = I have it and can share
availability = len(responses['yes'])
# NO = I have it but won't share (rate limited)
# → Tells you: resource exists, node loaded
congestion = len(responses['no'])
# SILENCE = Didn't respond
# → Tells you: don't have it, offline, or ignored
unknowns = len(responses['silence'])
return {
'available_from': availability,
'congested_nodes': congestion,
'unknown_state': unknowns,
'total_queried': availability + congestion + unknowns
}
Why silence is valuable:
Scenario: Want chunk:X
Broadcast to 10 BT nodes
Responses:
- 2 YES (have it, not rate limited)
- 1 NO (have it, rate limited)
- 7 SILENCE (don't have it or offline)
Insights:
✓ Chunk exists (3 nodes aware)
✓ Replication factor = 3
✓ 1 node congested (high demand?)
✓ 7 nodes don't have (need more replication?)
Silence isn’t absence - it’s information!
class BitTorrentNode:
"""BT node with rate limiters"""
def receive_intent(self, intent):
"""Intent broadcast received - decide response"""
chunk_id = intent['chunk_id']
# Do I have it?
storage = self._derive_storage()
if chunk_id not in storage:
# Don't have it → SILENCE
return None
# Have it - check rate limiters
limiters = self._compute_rate_limiters()
if self._should_share(chunk_id, limiters):
# YES - share it
self._respond_yes(intent, storage[chunk_id])
else:
# NO - have it but rate limited
self._respond_no(intent, reason='rate_limited')
def _compute_rate_limiters(self):
"""Compute from series"""
storage = self._derive_storage()
# Economic: storage space
total_size = sum(len(str(d)) for d in storage.values())
storage_budget = 100 * 1024 * 1024 # 100MB
economic = 1.0 - (total_size / storage_budget)
# Objective: chunk popularity
objective = 1.0 if len(storage) < 50 else 0.3
# W tracking: recent requests
recent_requests = sum(1 for e in self.series[-100:]
if e.get('event') == 'intent_received')
w_tracking = 1.0 - (recent_requests / 100)
# Topology: network health
topology = 1.0 # Simplified
return {
'economic': economic,
'objective': objective,
'w_tracking': w_tracking,
'topology': topology
}
def _should_share(self, chunk_id, limiters):
"""Decision logic"""
# All limiters green → YES
if all(v > 0.7 for v in limiters.values()):
return True
# Economic critical → NO
if limiters['economic'] < 0.2:
return False
# High load → NO
if limiters['w_tracking'] < 0.3:
return False
# Borderline → YES
return True
Rate limiters = autonomous decision making
class DHT:
"""Distributed Hash Table"""
def broadcast_intent(self, intent):
"""Broadcast to all relevant nodes"""
# Get all BT nodes
bt_nodes = self._find_nodes(type='bt')
# Broadcast to all
for node in bt_nodes:
try:
self._send_intent(node, intent)
except:
# Node offline → will appear as SILENCE
pass
# Log broadcast
self._append_series('intent_broadcast',
intent_id=intent['id'],
targets=len(bt_nodes))
def _find_nodes(self, type):
"""Find nodes by type from series"""
nodes = []
for entry in self.series:
if entry.get('event') == 'peer_added':
if entry.get('peer_type') == type:
nodes.append(entry['peer'])
return nodes
Flow:
1. Node A declares: "I want chunk:X"
→ Appends to local series
2. DHT receives declaration
→ Finds all BT nodes
→ Broadcasts to all
3. Each BT node receives
→ Decides independently
→ YES, NO, or SILENCE
4. Node A receives responses
→ Appends each to series
→ Including tracked silences
class SeriesChunking:
"""Split series into chunks for BT"""
def chunk_series(self, series, chunk_size=10):
"""Split series into chunks"""
chunks = []
for i in range(0, len(series), chunk_size):
chunk = {
'chunk_id': f'series_{self.node_id}_{i}',
'events': series[i:i+chunk_size],
'start_time': series[i]['t'],
'end_time': series[min(i+chunk_size-1, len(series)-1)]['t']
}
chunks.append(chunk)
return chunks
def push_chunks_to_bt(self, chunks):
"""Push chunks to BT network"""
for chunk in chunks:
# Declare intent to store
dht.broadcast_intent({
'from': self.address,
'intent': 'store_chunk',
'chunk_id': chunk['chunk_id'],
'data': chunk
})
# BT nodes decide whether to accept
# (Based on their rate limiters)
Key: Series stays local, only CHUNKS distributed
class MultiPerspective:
"""Derive from multiple perspectives"""
def fetch_perspectives(self, event_type):
"""Fetch chunks from multiple nodes"""
# Declare intent for relevant chunks
dht.broadcast_intent({
'intent': 'want_chunks',
'filter': event_type,
'from': self.address
})
# Collect responses
perspectives = []
for response in self._wait_for_responses():
if response['result'] == 'yes':
perspectives.append({
'node': response['from'],
'chunks': response['data']
})
return perspectives
def derive_consensus(self, perspectives):
"""Derive truth from multiple series"""
consensus = {}
# Example: Mapping consensus
observations = []
for p in perspectives:
for chunk in p['chunks']:
for event in chunk['events']:
if event['event'] == 'observation':
observations.append({
'node': p['node'],
'value': event['observation'],
'reputation': self._get_reputation(p['node'])
})
# Weighted consensus
total_weight = sum(o['reputation'] for o in observations)
consensus_value = sum(o['value'] * o['reputation']
for o in observations) / total_weight
return consensus_value
Multi-perspective = truth emerges from many views
# Node A wants to map territory
mapper_A = MapperNode('A')
# 1. Observe locally
mapper_A.observe_reality(location='forest_1')
# → Appends to local series
# 2. Want others' perspectives
mapper_A.declare_intent_to_dht({
'intent': 'want_observations',
'location': 'forest_1'
})
# 3. DHT broadcasts to all mapper nodes
# Mapper B: ✅ YES (sends observations)
# Mapper C: 🤷 SILENCE (offline)
# Mapper D: ✅ YES (sends observations)
# Mapper E: ❌ NO (has data but rate limited)
# 4. Mapper A receives responses
mapper_A._append_series('received_perspective',
from='B', data=observations_B)
mapper_A._append_series('silence',
from='C')
mapper_A._append_series('received_perspective',
from='D', data=observations_D)
mapper_A._append_series('rejected',
from='E', reason='rate_limited')
# 5. Derive consensus from available perspectives
consensus = mapper_A.derive_consensus([
observations_A, # Own
observations_B, # From B
observations_D # From D
])
# 6. Store consensus chunks to BT
mapper_A.push_chunks_to_bt(consensus_chunks)
# 7. Announce to DHT
dht.announce('chunk:consensus_forest_1', mapper_A.address)
Complete cycle: Local → Intent → Perspectives → Consensus → Storage
Traditional:
# Point-to-point request
response = node_B.get(chunk_id)
# Problems:
- Single point of failure
- No alternatives if rejected
- Silence = error (not data)
- No multi-perspective
Intent-based:
# Broadcast intention
dht.broadcast_intent('want_chunk', chunk_id)
# Benefits:
✓ Multiple responders
✓ Alternatives if some reject
✓ Silence is information
✓ Multi-perspective by default
✓ Rate limiting natural
✓ Autonomous decisions
Every Node:
series = [local events]
Want something?
→ Declare intent to DHT
→ DHT broadcasts
→ Multiple nodes decide:
• YES (have + willing)
• NO (have + rate limited)
• SILENCE (don't have / offline)
→ Append ALL outcomes to series
Derive state:
→ From local series
→ From fetched chunks
→ Multi-perspective consensus
Store chunks:
→ Push to BT network
→ BT nodes decide (rate limiters)
→ Distributed replication
Discover:
→ DHT: "Who has chunk:X?"
→ Multiple seeders
→ Fetch from any
Result: Complete distributed coordination via intent declarations
Three components:
self.series = [...] # Append-only
state = _derive_from_series()
dht.broadcast_intent("I want X")
# NOT: request("give me X")
responses = {
'yes': [nodes that shared],
'no': [nodes that refused],
'silence': [nodes that ignored]
}
# ALL are valid data points
Key insights:
This is the foundation for:
One paradigm. Infinite coordination. Intent everywhere.
∞
Links:
Announcement: 2026-02-19
Model: Series + Intent + DHT + BT = Complete Distributed System
Status: 📡 Declare Intent → YES/NO/SILENCE → Multi-Perspective Truth
∞