From Post 874: Node Series Intent: Complete paradigm
Key insight: Territory = Intent broadcasts, not assignments
Result: Mapping + Stewardship via distributed intent declarations
# Mapping Intent: "I observe X"
mapper_node.declare_intent({
'intent': 'observed_location',
'location': 'forest_A',
'observation': '1000 trees',
'sensor_type': 'lidar'
})
# → DHT broadcasts to all mapper nodes
# → Other mappers respond: YES/NO/SILENCE
# → Consensus emerges from responses
# Stewardship Intent: "I want to manage X"
steward_node.declare_intent({
'intent': 'want_stewardship',
'territory': 'forest_A',
'reputation': 0.9,
'plan': 'sustainable management'
})
# → DHT broadcasts to all nodes
# → Nodes derive best steward locally
# → Emergent coordination
Two separate intent types, same paradigm
class MapperNode:
"""Maps reality via intent declarations"""
def observe_and_declare(self, location):
"""Observe locally + declare to network"""
# 1. Local observation
observation = self._read_sensors(location)
self._append_series('local_observation',
location=location,
value=observation)
# 2. Declare intent to DHT
dht.broadcast_intent({
'from': self.address,
'intent': 'observed_location',
'location': location,
'observation': observation,
'timestamp': time.time()
})
# 3. Also declare: "I want others' observations"
dht.broadcast_intent({
'from': self.address,
'intent': 'want_observations',
'location': location
})
return observation
def receive_observation_intent(self, intent):
"""Another mapper wants observations"""
location = intent['location']
# Do I have observations for this location?
my_observations = self._get_observations(location)
if not my_observations:
# SILENCE (don't have it)
return None
# Check rate limiters
limiters = self._compute_rate_limiters()
if limiters['w_tracking'] < 0.3:
# NO (have it but rate limited)
return {'response': 'no', 'reason': 'rate_limited'}
# YES (share observations)
return {
'response': 'yes',
'observations': my_observations,
'reputation': self._derive_mapping_reputation()
}
Flow:
Mapper A observes forest_A: 1000 trees
→ Declares to DHT: "I observed 1000 trees at forest_A"
→ Declares to DHT: "I want others' observations of forest_A"
DHT broadcasts both intents
Mapper B: ✅ YES (observed 1200 trees, shares)
Mapper C: 🤷 SILENCE (hasn't observed this location)
Mapper D: ✅ YES (observed 950 trees, shares)
Mapper E: ❌ NO (observed but rate limited)
Mapper A appends ALL outcomes to series:
- Own: 1000 trees
- From B: 1200 trees (rep: 0.8)
- From C: SILENCE
- From D: 950 trees (rep: 0.9)
- From E: NO (congested)
Weighted consensus:
= (1000*0.7 + 1200*0.8 + 950*0.9) / (0.7+0.8+0.9)
= ~1043 trees
Multi-perspective mapping via intent declarations!
def derive_mapping_consensus(self, location, responses):
"""Derive from all response types"""
# Collect observations
observations = []
# Own observation
my_obs = self._get_my_observation(location)
if my_obs:
observations.append({
'value': my_obs,
'reputation': self._derive_mapping_reputation(),
'source': 'self'
})
# YES responses (shared observations)
for r in responses['yes']:
observations.append({
'value': r['observations'],
'reputation': r['reputation'],
'source': r['from']
})
# NO responses (have data but won't share)
# → Tells us: location observed by more nodes
# → Increases confidence in existence
for r in responses['no']:
self._append_series('node_has_data',
location=location,
node=r['from'],
reason=r['reason'])
# SILENCE responses
# → Tells us: nodes that haven't observed
# → Useful for coverage analysis
for r in responses['silence']:
self._append_series('node_no_data',
location=location,
node=r['from'])
# Weighted consensus from YES responses
if not observations:
return None
total_weight = sum(o['reputation'] for o in observations)
consensus = sum(o['value'] * o['reputation']
for o in observations) / total_weight
# Metadata from all responses
metadata = {
'consensus_value': consensus,
'num_observers': len(observations),
'num_aware': len(observations) + len(responses['no']),
'num_unaware': len(responses['silence']),
'confidence': len(observations) / (len(observations) + len(responses['silence']))
}
return metadata
Insights from each response type:
class StewardshipIntent:
"""Stewardship via intent declarations"""
def declare_stewardship_intent(self, territory):
"""Declare: I want to manage this territory"""
# Get my stewardship reputation
my_rep = self._derive_stewardship_reputation()
# Declare intent to DHT
dht.broadcast_intent({
'from': self.address,
'intent': 'want_stewardship',
'territory': territory,
'reputation': my_rep,
'plan': self.management_plan(territory)
})
# Append to my series
self._append_series('declared_stewardship_intent',
territory=territory,
reputation=my_rep)
Key difference from mapping:
Mapping: "I observed X" + "Give me your observations"
→ Multi-perspective data collection
→ Consensus from combined views
Stewardship: "I want to manage X"
→ Self-nomination declaration
→ Others derive best choice locally
def derive_best_steward(self, territory, intents):
"""
Each node derives best steward from intent broadcasts
Same input → same output (deterministic)
"""
# Collect all stewardship intents for this territory
candidates = []
for intent in intents:
if intent['intent'] == 'want_stewardship' and \
intent['territory'] == territory:
# Fetch stewardship reputation chunks from BT
# (Using intent paradigm!)
dht.broadcast_intent({
'intent': 'want_reputation_chunks',
'node': intent['from'],
'type': 'stewardship'
})
# Collect responses (YES/NO/SILENCE)
rep_chunks = self._collect_responses()
# Derive reputation from chunks
reputation = self._derive_from_chunks(rep_chunks)
candidates.append({
'node': intent['from'],
'reputation': reputation,
'plan': intent['plan']
})
# Deterministic selection: highest reputation
if not candidates:
return None
best = max(candidates, key=lambda c: c['reputation'])
# Append decision to MY series
self._append_series('derived_best_steward',
territory=territory,
steward=best['node'],
reputation=best['reputation'])
return best['node']
Flow:
Territory: forest_A needs steward
Alice declares: "I want stewardship of forest_A" (rep: 0.9)
Bob declares: "I want stewardship of forest_A" (rep: 0.3)
Carol declares: "I want stewardship of forest_A" (rep: 0.7)
DHT broadcasts all declarations
Every node fetches reputation chunks:
→ Intent: "I want Alice's stewardship reputation chunks"
→ Intent: "I want Bob's stewardship reputation chunks"
→ Intent: "I want Carol's stewardship reputation chunks"
BT nodes respond (YES/NO/SILENCE with chunks)
Every node derives locally:
Alice: rep = 0.9 (best)
Bob: rep = 0.3
Carol: rep = 0.7
Every node concludes: Alice is best steward
Nodes wanting coordination contact Alice peer-to-peer
No central assignment - emergent consensus!
class ReputationChunking:
"""Store reputation events as chunks in BT"""
def push_reputation_to_bt(self):
"""Push reputation-related events to BT"""
# Filter series for reputation events
rep_events = [
e for e in self.series
if e.get('event') in [
'ecosystem_change',
'dispute_resolution',
'observation_check',
'consensus_match'
]
]
# Chunk events
chunks = self._chunk_events(rep_events, chunk_size=10)
# Push each chunk to BT via intent
for chunk in chunks:
dht.broadcast_intent({
'from': self.address,
'intent': 'store_chunk',
'chunk_id': chunk['id'],
'chunk_type': 'reputation',
'node_id': self.node_id,
'data': chunk
})
# BT nodes decide via rate limiters
# (YES/NO/SILENCE responses)
def fetch_reputation_chunks(self, node_id):
"""Fetch reputation chunks for another node"""
# Declare intent
dht.broadcast_intent({
'from': self.address,
'intent': 'want_reputation_chunks',
'target_node': node_id
})
# Collect responses
responses = self._wait_for_responses()
chunks = []
for r in responses:
if r['response'] == 'yes':
chunks.extend(r['chunks'])
return chunks
Why chunks?
# Phase 1: MAPPING
# 1. Mappers declare observation intents
mapper_A.declare_intent('observed_location', 'forest_A', value=1000)
mapper_B.declare_intent('observed_location', 'forest_A', value=1200)
mapper_C.declare_intent('observed_location', 'forest_A', value=950)
# 2. Each also declares "want others' observations"
# DHT broadcasts all intents
# 3. Mappers respond to "want observations" intents
# YES: Share observations
# NO: Have but rate limited
# SILENCE: Don't have
# 4. Each mapper derives consensus locally
consensus_A = mapper_A.derive_consensus(responses) # ~1050
consensus_B = mapper_B.derive_consensus(responses) # ~1050
consensus_C = mapper_C.derive_consensus(responses) # ~1050
# (Same input → same output)
# 5. Push consensus chunks to BT
mapper_A.push_chunks_to_bt(consensus_chunks)
# 6. Announce to DHT
dht.announce('chunk:consensus_forest_A', mapper_A.address)
# Phase 2: STEWARDSHIP
# 1. Candidates declare stewardship intents
alice.declare_intent('want_stewardship', 'forest_A', rep=0.9)
bob.declare_intent('want_stewardship', 'forest_A', rep=0.3)
carol.declare_intent('want_stewardship', 'forest_A', rep=0.7)
# 2. DHT broadcasts all stewardship intents
# 3. Every node fetches reputation chunks
# (Via intent declarations + BT responses)
# 4. Every node derives best steward locally
best_node1 = node1.derive_best_steward('forest_A', intents) # Alice
best_node2 = node2.derive_best_steward('forest_A', intents) # Alice
best_node3 = node3.derive_best_steward('forest_A', intents) # Alice
# (Deterministic - all agree)
# 5. Nodes wanting coordination contact Alice directly
# (Peer-to-peer, not through DHT)
# Phase 3: ONGOING MANAGEMENT
# 1. Alice manages, records events
alice._append_series('ecosystem_change', territory='forest_A', delta=+10)
alice._append_series('dispute_resolved', territory='forest_A', success=True)
# 2. Push reputation chunks to BT periodically
alice.push_reputation_to_bt()
# 3. Others fetch updated chunks to re-derive reputation
# (Intent-based fetching when needed)
Complete coordination via intent declarations!
Traditional (❌):
Central Registry:
1. Register territory
2. Accept applications
3. Review candidates
4. Assign steward
5. Monitor performance
Problems:
- Single point of failure
- Central authority needed
- No multi-perspective
- Assigned, not emergent
Intent-based (✅):
Distributed Intents:
1. Mappers declare observations → multi-perspective consensus
2. Candidates declare stewardship intent
3. Each node fetches reputation chunks (YES/NO/SILENCE)
4. Each node derives best steward locally (deterministic)
5. Coordination emerges peer-to-peer
Benefits:
✓ No central authority
✓ Multi-perspective reality
✓ Emergent coordination
✓ YES/NO/SILENCE all inform
✓ Rate limiters = autonomous
✓ Distributed storage (BT)
class EigenRealEstate:
"""Complete system"""
def __init__(self):
# Mapper nodes
self.mappers = [MapperNode(i) for i in range(100)]
# Steward nodes
self.stewards = [StewardNode(i) for i in range(50)]
# DHT for intent broadcast
self.dht = DHTNode('dht1')
# BT for chunk storage
self.bt_nodes = [BTNode(i) for i in range(20)]
def coordinate_territory(self, location):
"""Full coordination via intents"""
# 1. Mapping phase (intent-based)
for mapper in self.mappers:
mapper.declare_intent('observe', location)
# DHT broadcasts all observation intents
# Mappers respond: YES/NO/SILENCE
# Each derives consensus locally
# 2. Stewardship phase (intent-based)
for steward in self.stewards:
steward.declare_intent('want_stewardship', location)
# DHT broadcasts stewardship intents
# All nodes fetch reputation chunks (intent-based)
# All nodes derive best steward (deterministic)
# 3. Coordination emerges
# No central assignment
# Peer-to-peer contact with selected steward
return 'emergent_coordination_complete'
Every territory:
Mapping:
→ Mappers declare: "I observed X"
→ Mappers declare: "Want others' observations"
→ DHT broadcasts
→ Responses: YES/NO/SILENCE
→ Multi-perspective consensus
→ Push consensus chunks to BT
Stewardship:
→ Candidates declare: "I want stewardship"
→ DHT broadcasts
→ All nodes fetch reputation chunks (intent-based)
→ All nodes derive best steward (deterministic)
→ Coordination emerges peer-to-peer
Storage:
→ Series → chunks
→ Push to BT via intents
→ BT nodes decide (rate limiters)
→ Distributed replication
Discovery:
→ DHT: "Who has chunk:X?"
→ Intent-based fetching
→ Multi-source retrieval
Result:
→ Complete meatspace coordination
→ No central authority
→ Multi-perspective truth
→ Emergent stewardship
→ Distributed storage
→ Intent declarations everywhere
Territory coordination = distributed intent orchestration
From Post 874: Universal paradigm
Applied to territory:
"I observed forest_A: 1000 trees"
"I want others' observations of forest_A"
→ Multi-perspective consensus
"I want stewardship of forest_A"
→ Reputation chunks fetched
→ Best steward derived locally
YES: Data provided
NO: Have but rate limited
SILENCE: Don't have / offline
→ All inform decision
Series → chunks → BT
Intent-based push
Rate limiters decide
No central assignment
Deterministic derivation
Peer-to-peer contact
Result: Complete territory coordination via intent declarations
∞
Links:
Announcement: 2026-02-19
Model: EigenRealEstate = Territory Via Intent Declarations
Status: 🗺️ Intent Broadcast → Multi-Perspective → Emergent Coordination
∞