From Post 874: Node Series Intent: Complete paradigm
Key insight: Lending via intent broadcasts, borrowing via intent broadcasts
Result: Universal credit market via distributed intent matching
# Lending Intent: "I want to lend X at rate Y"
lender.declare_intent({
'intent': 'want_to_lend',
'asset': 'USDC',
'amount': 10000,
'min_rate': 0.05, # 5% minimum
'collateral_accepted': ['WETH', 'WBTC'],
'ltv_max': 0.8
})
# → DHT broadcasts to all borrowers
# → Borrowers respond: YES/NO/SILENCE
# → Match emerges from responses
# Borrowing Intent: "I want to borrow X with collateral Y"
borrower.declare_intent({
'intent': 'want_to_borrow',
'asset': 'USDC',
'amount': 5000,
'collateral': 'WETH',
'collateral_amount': 2.5, # ETH
'max_rate': 0.08 # 8% maximum
})
# → DHT broadcasts to all lenders
# → Lenders respond: YES/NO/SILENCE
# → Match emerges from responses
Two separate intent types, same paradigm
class LendingNode:
"""Lends via intent declarations"""
def provide_liquidity(self, asset, amount, min_rate):
"""Declare lending intent"""
# Append to local series
self._append_series('declared_lending_intent',
asset=asset,
amount=amount,
min_rate=min_rate)
# Declare intent to DHT
dht.broadcast_intent({
'from': self.address,
'intent': 'want_to_lend',
'asset': asset,
'amount': amount,
'min_rate': min_rate,
'timestamp': time.time()
})
return 'intent_broadcasted'
def receive_borrow_intent(self, intent):
"""Borrower wants to borrow - decide if match"""
# Check if intent matches our terms
asset_match = intent['asset'] == self.lending_asset
amount_available = self._derive_available_liquidity()
rate_acceptable = intent.get('max_rate', 0) >= self.min_rate
if not asset_match or amount_available < intent['amount']:
# SILENCE (can't provide)
return None
# Check rate limiters
limiters = self._compute_rate_limiters()
if limiters['w_tracking'] < 0.3:
# NO (can provide but rate limited)
return {
'response': 'no',
'reason': 'rate_limited',
'available': amount_available
}
if not rate_acceptable:
# NO (rate too low)
return {
'response': 'no',
'reason': 'rate_mismatch',
'min_rate': self.min_rate
}
# YES (match!)
return {
'response': 'yes',
'amount': min(amount_available, intent['amount']),
'rate': self.min_rate,
'terms': self.lending_terms
}
Flow:
Lender Alice declares: "Want to lend 10k USDC at 5%"
→ DHT broadcasts intent
Borrower Bob declares: "Want to borrow 5k USDC, will pay up to 8%"
→ DHT broadcasts intent
Alice receives Bob's intent:
→ Asset matches: USDC ✓
→ Amount available: 10k ✓
→ Rate acceptable: 8% >= 5% ✓
→ ✅ YES: "I'll lend 5k at 5%"
Bob receives responses:
- Alice: ✅ YES (5k at 5%)
- Carol: 🤷 SILENCE (no USDC)
- Dave: ❌ NO (rate too low, wants 10%)
Bob selects Alice (best rate)
Match complete!
Lending = intent matching, not order book
def process_borrow_responses(self, borrowing_intent, responses):
"""Process all responses to borrowing intent"""
offers = {
'yes': [], # Lenders willing to lend
'no': [], # Lenders who refused
'silence': [] # Lenders who didn't respond
}
# Collect YES responses (actual offers)
for r in responses['yes']:
offers['yes'].append({
'lender': r['from'],
'amount': r['amount'],
'rate': r['rate'],
'terms': r['terms']
})
# NO responses tell us about market
for r in responses['no']:
reason = r.get('reason')
if reason == 'rate_mismatch':
# Tells us: our rate too low
offers['no'].append({
'lender': r['from'],
'min_rate': r.get('min_rate'),
'reason': reason
})
elif reason == 'rate_limited':
# Tells us: lender exists but congested
offers['no'].append({
'lender': r['from'],
'available': r.get('available'),
'reason': reason
})
# SILENCE tells us coverage
for r in responses['silence']:
# Lenders without this asset
offers['silence'].append(r['from'])
# Market insights
if offers['yes']:
best_rate = min(o['rate'] for o in offers['yes'])
avg_rate = sum(o['rate'] for o in offers['yes']) / len(offers['yes'])
else:
# No offers - look at rejections
if any(r['reason'] == 'rate_mismatch' for r in offers['no']):
min_rates = [r['min_rate'] for r in offers['no']
if r.get('min_rate')]
suggested_rate = min(min_rates) if min_rates else None
else:
suggested_rate = None
return {
'offers': offers['yes'],
'rejections': offers['no'],
'non_responders': len(offers['silence']),
'best_rate': best_rate if offers['yes'] else None,
'market_insight': {
'liquidity_available': len(offers['yes']) > 0,
'suggested_rate': suggested_rate,
'lenders_congested': sum(1 for r in offers['no']
if r['reason'] == 'rate_limited')
}
}
Insights from each response type:
def discover_market_rate(asset, collateral):
"""
Discover current market rate via intents
No oracle needed - emergent from declarations
"""
# Declare test borrowing intent
test_intent = {
'intent': 'query_rate',
'asset': asset,
'collateral': collateral,
'amount': 1000 # Small test amount
}
dht.broadcast_intent(test_intent)
# Collect responses
responses = wait_for_responses(timeout=5)
# Analyze offers
offers = [r for r in responses if r['response'] == 'yes']
if not offers:
return {
'rate': None,
'liquidity': 0,
'message': 'No liquidity available'
}
# Market rate = median of offers
rates = sorted(o['rate'] for o in offers)
market_rate = rates[len(rates) // 2] # Median
# Liquidity depth
total_liquidity = sum(o['amount'] for o in offers)
return {
'market_rate': market_rate,
'best_rate': min(rates),
'worst_rate': max(rates),
'total_liquidity': total_liquidity,
'num_lenders': len(offers)
}
Example:
Query: "What's the rate for USDC/WETH lending?"
Broadcast test intent
Lenders respond:
- Alice: ✅ 5% (10k available)
- Bob: ✅ 6% (5k available)
- Carol: ✅ 5.5% (8k available)
- Dave: 🤷 SILENCE
- Eve: ❌ NO (wants 10%)
Market rate: 5.5% (median)
Best rate: 5%
Total liquidity: 23k USDC
Num lenders: 3
Rate discovery = emergent from intent declarations
class CollateralManagement:
"""Manage collateral via series push"""
def deposit_collateral(self, asset, amount):
"""Deposit collateral"""
# Append to series
self._append_series('collateral_deposited',
asset=asset,
amount=amount,
timestamp=time.time())
return self._derive_collateral_balance()
def _derive_collateral_balance(self):
"""Derive collateral from series"""
balances = {}
for entry in self.series:
if entry['event'] == 'collateral_deposited':
asset = entry['asset']
balances[asset] = balances.get(asset, 0) + entry['amount']
elif entry['event'] == 'collateral_withdrawn':
asset = entry['asset']
balances[asset] = balances.get(asset, 0) - entry['amount']
return balances
def check_health_factor(self):
"""Check loan health from series"""
collateral = self._derive_collateral_value()
debt = self._derive_debt_value()
if debt == 0:
return float('inf')
health_factor = collateral / debt
# Append health check to series
self._append_series('health_checked',
collateral=collateral,
debt=debt,
health_factor=health_factor)
return health_factor
def broadcast_liquidation_opportunity(loan):
"""When loan unhealthy, broadcast liquidation intent"""
# Check health from series
health_factor = loan._derive_health_factor()
if health_factor < 1.0:
# Broadcast liquidation opportunity
dht.broadcast_intent({
'intent': 'liquidation_available',
'loan_id': loan.loan_id,
'collateral': loan._derive_collateral(),
'debt': loan._derive_debt(),
'health_factor': health_factor,
'discount': 0.05 # 5% liquidation bonus
})
# Append to series
loan._append_series('liquidation_broadcast',
health_factor=health_factor)
def receive_liquidation_intent(intent):
"""Liquidator receives opportunity"""
# Check if profitable
collateral_value = intent['collateral']['value']
debt_value = intent['debt']['value']
discount = intent['discount']
profit = collateral_value * (1 - discount) - debt_value
if profit > 0:
# YES - execute liquidation
return {
'response': 'yes',
'liquidator': self.address,
'repay_amount': debt_value
}
else:
# NO - not profitable
return {
'response': 'no',
'reason': 'not_profitable'
}
Liquidation = intent broadcast, not keeper bot
def create_market(asset, collateral):
"""
Create market for any asset pair
No permission needed - just declare intents
"""
# No pool creation transaction
# No admin approval
# Just start declaring intents!
# Lender declares
lender.declare_intent({
'intent': 'want_to_lend',
'asset': asset,
'collateral_accepted': [collateral]
})
# Borrower declares
borrower.declare_intent({
'intent': 'want_to_borrow',
'asset': asset,
'collateral': collateral
})
# Market exists!
# No pool contract needed
# Just intent matching
Example:
Want to create PEPE/DOGE lending market?
1. No pool deployment
2. No liquidity seeding
3. Just declare intents:
- "I lend PEPE, accept DOGE collateral"
- "I borrow PEPE, offer DOGE collateral"
4. Intents broadcast via DHT
5. Matching happens
6. Market exists!
Universal markets = permissionless intent declarations
def get_multi_perspective_rate(asset, collateral, amount):
"""Get rate from multiple lenders"""
# Declare borrowing intent
dht.broadcast_intent({
'intent': 'want_to_borrow',
'asset': asset,
'amount': amount,
'collateral': collateral
})
# Collect responses
responses = wait_for_responses()
# Analyze offers
offers = []
for r in responses:
if r['response'] == 'yes':
offers.append({
'lender': r['from'],
'rate': r['rate'],
'amount': r['amount'],
'reputation': fetch_reputation(r['from'])
})
# Weight by reputation
if offers:
total_weight = sum(o['reputation'] for o in offers)
weighted_rate = sum(o['rate'] * o['reputation']
for o in offers) / total_weight
return {
'weighted_rate': weighted_rate,
'offers': offers,
'best_rate': min(o['rate'] for o in offers),
'confidence': 'high' if len(offers) >= 3 else 'medium'
}
else:
return {
'weighted_rate': None,
'offers': [],
'confidence': 'none'
}
Multi-perspective rate discovery
class EigenLending:
"""
Universal lending via intent paradigm
No special system - just Post 874 applied
"""
def __init__(self):
# No pool contracts
# No admin
# Just nodes declaring intents
pass
def lend(self, lender, asset, amount, min_rate):
"""Lend via intent"""
lender.declare_intent({
'intent': 'want_to_lend',
'asset': asset,
'amount': amount,
'min_rate': min_rate
})
# Intent broadcast by DHT
# Borrowers receive and respond
def borrow(self, borrower, asset, amount, collateral, max_rate):
"""Borrow via intent"""
borrower.declare_intent({
'intent': 'want_to_borrow',
'asset': asset,
'amount': amount,
'collateral': collateral,
'max_rate': max_rate
})
# Intent broadcast by DHT
# Lenders receive and respond
# Borrower selects best offer
def discover_rate(self, asset, collateral):
"""Discover rate via test intent"""
test_intent = {
'intent': 'query_rate',
'asset': asset,
'collateral': collateral
}
dht.broadcast_intent(test_intent)
responses = wait_for_responses()
return derive_market_rate(responses)
No pools, no admin, just intents
Every lender:
→ Declares lending intents
→ Sets rates/terms
→ Responds to borrow intents (YES/NO/SILENCE)
Every borrower:
→ Declares borrowing intents
→ Sets collateral/rates
→ Receives lender responses
→ Selects best offer
Rate discovery:
→ Emergent from intent declarations
→ No oracle needed
→ Multi-perspective consensus
Liquidation:
→ Broadcast as intent
→ Liquidators respond
→ First YES wins
Universal markets:
→ Any asset pair
→ No permission
→ Just declare intents
Result:
→ Complete credit market
→ Distributed coordination
→ Intent-based matching
→ Emergent rates
EigenLending = Intent paradigm applied to lending
From Post 874: Universal paradigm
Applied to lending:
"I want to lend 10k USDC at 5%"
→ Broadcast via DHT
→ Borrowers respond
"I want to borrow 5k USDC with WETH collateral"
→ Broadcast via DHT
→ Lenders respond (YES/NO/SILENCE)
→ Select best offer
YES: Lending offer
NO (rate_mismatch): Market rate insight
NO (rate_limited): Lender congested
SILENCE: No liquidity
→ All inform decision
Emergent from intent declarations
Multi-perspective consensus
No oracle needed
Any asset pair
No permission
Just declare intents
Result: Universal credit market via distributed intent declarations
∞
Links:
Announcement: 2026-02-18
Model: EigenLending = Intent-Based Universal Lending
Status: 💰 Lending Intents → Borrowing Intents → Rate Discovery → Match
∞