From Post 874: Node Series Intent: Complete paradigm
Key insight: Reputation derived from event chunks, fetched via intents
Result: Track record > Capital, via multi-perspective observation
class ReputationNode:
"""Reputation via series push"""
def __init__(self, node_id):
self.node_id = node_id
# ONLY series
self.series = [
{'t': time.time(), 'event': 'initialized'}
]
def record_action(self, action_type, **details):
"""Record reputation-relevant action"""
# Append to series (not mutation!)
self._append_series(action_type, **details)
# Push chunks to BT periodically
if len(self.series) % 10 == 0:
self._push_recent_chunks_to_bt()
def _derive_reputation(self):
"""Derive reputation from series (computed on demand)"""
positive = 0
negative = 0
for entry in self.series:
if entry['event'] in ['ecosystem_improved', 'dispute_resolved', 'consensus_match']:
positive += 1
elif entry['event'] in ['ecosystem_degraded', 'dispute_failed', 'consensus_mismatch']:
negative += 1
total = positive + negative
if total == 0:
return 0.5 # Neutral
return positive / total
Reputation events:
All appended to series, never mutated
def query_reputation(self, target_node_id):
"""
Query another node's reputation
Intent-based, not request
"""
# Declare intent to DHT
dht.broadcast_intent({
'from': self.address,
'intent': 'want_reputation_chunks',
'target_node': target_node_id,
'chunk_types': ['ecosystem', 'dispute', 'consensus']
})
# Append declaration to MY series
self._append_series('declared_reputation_query',
target=target_node_id,
timestamp=time.time())
# Wait for responses (YES/NO/SILENCE)
# Each response appended to series
Not:
❌ reputation = get_reputation(node_id) # Request
❌ score = node.reputation_score # Stored state
But:
✅ dht.broadcast_intent("want_reputation_chunks", node_id)
✅ responses = collect_responses() # YES/NO/SILENCE
✅ reputation = derive_from_chunks(responses['yes'])
class BTNodeWithReputation:
"""BT node stores reputation chunks"""
def receive_reputation_intent(self, intent):
"""Reputation query received"""
target_node = intent['target_node']
# Do I have reputation chunks for this node?
my_chunks = self._get_chunks_for_node(target_node)
if not my_chunks:
# SILENCE (don't have chunks)
return None
# Check rate limiters
limiters = self._compute_rate_limiters()
if limiters['w_tracking'] < 0.3:
# NO (have chunks but rate limited)
return {
'response': 'no',
'reason': 'rate_limited',
'chunks_available': len(my_chunks)
}
# YES (share chunks)
return {
'response': 'yes',
'chunks': my_chunks,
'total_events': sum(len(c['events']) for c in my_chunks)
}
Responses:
Intent: "I want reputation chunks for Alice"
DHT broadcasts to all BT nodes
BT1: ✅ YES (has 3 chunks, shares)
BT2: 🤷 SILENCE (doesn't have Alice's chunks)
BT3: ✅ YES (has 5 chunks, shares)
BT4: ❌ NO (has chunks but rate limited)
BT5: 🤷 SILENCE (offline)
Requestor appends ALL outcomes:
- From BT1: 3 chunks (45 events)
- From BT2: SILENCE
- From BT3: 5 chunks (72 events)
- From BT4: NO (rate limited, 2 chunks available)
- From BT5: SILENCE
Derive reputation from available chunks:
→ 117 total events from BT1 + BT3
→ Positive: 94
→ Negative: 23
→ Reputation: 94/117 = 0.80
All responses inform the query!
def derive_multi_perspective_reputation(self, target_node, responses):
"""Derive reputation from multiple chunk sources"""
all_chunks = []
# Collect YES responses
for r in responses['yes']:
all_chunks.extend(r['chunks'])
# NO responses tell us chunks exist elsewhere
chunks_elsewhere = sum(r.get('chunks_available', 0)
for r in responses['no'])
# SILENCE tells us coverage
nodes_without_data = len(responses['silence'])
# Combine all events from chunks
all_events = []
for chunk in all_chunks:
all_events.extend(chunk['events'])
# Count event types
positive = sum(1 for e in all_events
if e['event'] in ['ecosystem_improved',
'dispute_resolved',
'consensus_match'])
negative = sum(1 for e in all_events
if e['event'] in ['ecosystem_degraded',
'dispute_failed',
'consensus_mismatch'])
total = positive + negative
if total == 0:
return {
'reputation': 0.5,
'confidence': 'low',
'sources': 0
}
reputation = positive / total
# Metadata from all responses
metadata = {
'reputation': reputation,
'total_events': total,
'positive_events': positive,
'negative_events': negative,
'chunks_fetched': len(all_chunks),
'bt_nodes_responded': len(responses['yes']),
'bt_nodes_rate_limited': len(responses['no']),
'bt_nodes_no_data': nodes_without_data,
'confidence': 'high' if len(responses['yes']) >= 2 else 'medium'
}
return metadata
Benefits:
class ReputationChunkPushing:
"""Push reputation events to BT network"""
def push_reputation_chunks(self):
"""Push recent reputation events as chunks"""
# Filter series for reputation-relevant events
rep_events = [
e for e in self.series
if e.get('event') in [
'ecosystem_improved',
'ecosystem_degraded',
'dispute_resolved',
'dispute_failed',
'consensus_match',
'consensus_mismatch',
'community_feedback'
]
]
# Chunk events (10 events per chunk)
chunks = []
for i in range(0, len(rep_events), 10):
chunk = {
'chunk_id': f'rep_{self.node_id}_{i}',
'node_id': self.node_id,
'chunk_type': 'reputation',
'events': rep_events[i:i+10],
'start_time': rep_events[i]['t'],
'end_time': rep_events[min(i+9, len(rep_events)-1)]['t']
}
chunks.append(chunk)
# Push each chunk via intent
for chunk in chunks:
dht.broadcast_intent({
'from': self.address,
'intent': 'store_chunk',
'chunk_id': chunk['chunk_id'],
'chunk_type': 'reputation',
'data': chunk
})
# BT nodes decide via rate limiters
# YES: Store it
# NO: Rate limited
# SILENCE: Don't want to store
Why chunks?
def compare_candidates(self, candidates):
"""Compare by track record, not capital"""
scores = []
for candidate in candidates:
# Fetch reputation via intent
dht.broadcast_intent({
'intent': 'want_reputation_chunks',
'target_node': candidate.node_id
})
responses = self._collect_responses()
# Derive reputation from chunks
rep_data = self.derive_multi_perspective_reputation(
candidate.node_id,
responses
)
# Score = reputation (not capital!)
score = rep_data['reputation']
# Capital can amplify but doesn't dominate
if candidate.stake > 0:
score *= (1 + 0.1 * log(candidate.stake))
scores.append({
'candidate': candidate,
'reputation': rep_data['reputation'],
'score': score,
'confidence': rep_data['confidence']
})
# Best track record wins
best = max(scores, key=lambda s: s['score'])
return best
Example:
Candidate A:
Reputation: 0.9 (excellent track record)
Stake: 10 ETH
Score: 0.9 * 1.23 = 1.1
Candidate B:
Reputation: 0.3 (poor track record)
Stake: 1000 ETH
Score: 0.3 * 1.69 = 0.51
→ A wins despite lower capital!
Track record matters more than money
def handle_poor_performance(self, node):
"""Natural consequences, not arbitrary punishment"""
# Bad performance appended to series
node._append_series('ecosystem_degraded',
territory='forest_A',
health_delta=-15)
# Push updated chunks to BT
node._push_reputation_chunks()
# Others fetch updated reputation
# (When they query via intent)
# Natural consequence: Lower reputation
# → Less likely selected for future roles
# → Economic incentive to improve
# NO slashing
# NO arbitrary punishment
# Just natural market response to track record
What happens:
Alice manages forest poorly
→ Ecosystem degraded (event appended)
→ Reputation chunks updated in BT
Next stewardship selection:
→ Nodes query Alice's reputation (intent)
→ BT nodes respond with updated chunks (YES)
→ Derived reputation: 0.3 (low)
→ Alice not selected
Alice's response:
→ Manage better to rebuild reputation
→ Or exit (market signals)
NO punishment needed!
Natural incentives guide behavior.
class ReputationStake:
"""Stake amplifies reputation, doesn't replace it"""
def calculate_selection_weight(self, candidate):
"""Weight = reputation + stake amplifier"""
# Fetch reputation via intent
rep_data = self._fetch_reputation(candidate.node_id)
base_reputation = rep_data['reputation'] # 0.0 to 1.0
# Stake amplifies (doesn't replace)
if candidate.stake_eth > 0:
stake_multiplier = 1 + 0.1 * math.log(candidate.stake_eth)
else:
stake_multiplier = 1.0
weight = base_reputation * stake_multiplier
return {
'weight': weight,
'reputation': base_reputation,
'stake': candidate.stake_eth,
'multiplier': stake_multiplier
}
Examples:
High rep, low stake:
Rep: 0.9
Stake: 1 ETH
Multiplier: 1.0
Weight: 0.9 * 1.0 = 0.9
High rep, high stake:
Rep: 0.9
Stake: 100 ETH
Multiplier: 1.46
Weight: 0.9 * 1.46 = 1.31
Low rep, high stake:
Rep: 0.2
Stake: 1000 ETH
Multiplier: 1.69
Weight: 0.2 * 1.69 = 0.34
→ High rep always dominates!
Stake = commitment signal, not payment
def build_reputation_timeline():
"""How to build high reputation via intents"""
timeline = {
'month_1': {
'actions': [
'Perform first actions',
'Record in series',
'Push chunks to BT'
],
'reputation': 0.5, # Neutral
'status': 'Building track record'
},
'month_3': {
'actions': [
'Consistent positive actions',
'Regular chunk updates',
'Multi-node verification'
],
'reputation': 0.6,
'status': 'Track record emerging'
},
'month_6': {
'actions': [
'Sustained performance',
'Community validation',
'Cross-node reputation'
],
'reputation': 0.7,
'status': 'Good reputation'
},
'year_1': {
'actions': [
'Long-term consistency',
'Multiple domains',
'High confidence'
],
'reputation': 0.8,
'status': 'High reputation'
},
'year_2+': {
'actions': [
'Elite track record',
'Wide recognition',
'Priority selection'
],
'reputation': 0.9+,
'status': 'Elite reputation'
}
}
return timeline
Key: Can’t buy reputation, must earn via actions
def select_best_candidate(candidates, skill_type):
"""
Select best candidate via intent queries
No "Ethos" system needed - just use Post 874 paradigm
"""
best = None
best_weight = 0
for candidate in candidates:
# Query reputation via intent (Post 874 paradigm)
dht.broadcast_intent({
'intent': 'want_reputation_chunks',
'target_node': candidate.node_id,
'skill_type': skill_type
})
# Collect responses (YES/NO/SILENCE)
responses = wait_for_responses()
# Derive reputation from chunks
rep_data = derive_multi_perspective_reputation(
candidate.node_id,
responses
)
# Calculate weight (reputation + stake)
weight = rep_data['reputation']
if candidate.stake_eth > 0:
weight *= (1 + 0.1 * math.log(candidate.stake_eth))
if weight > best_weight:
best = candidate
best_weight = weight
return best
No “Ethos” abstraction needed:
Every node:
series = [reputation events]
Record actions:
→ Append to local series
→ Push chunks to BT (via intent)
→ BT nodes decide (rate limiters)
→ Distributed replication
Query reputation:
→ Declare intent to DHT
→ DHT broadcasts to BT nodes
→ BT responds: YES/NO/SILENCE
→ Derive from multiple chunks
→ Multi-perspective reputation
Selection:
→ Query all candidates (intent-based)
→ Compare track records
→ Reputation > Capital
→ Best track record selected
Natural incentives:
→ Good actions → high reputation → more selected
→ Bad actions → low reputation → less selected
→ No punishment needed
→ Market-driven behavior
Result:
→ Track record matters most
→ Multi-perspective verification
→ Distributed reputation storage
→ Intent-based queries
→ Natural selection
Reputation = distributed event sourcing via intents
From Post 874: Universal paradigm
Applied to reputation (no special system needed):
_append_series('ecosystem_improved', delta=+10)
→ Push chunks to BT via intent
dht.broadcast_intent("want_reputation_chunks", node_id)
→ YES/NO/SILENCE responses
→ Derive from multiple sources
YES: Chunks provided
NO: Have chunks but rate limited
SILENCE: Don't have chunks
→ All inform confidence
weight = reputation * stake_multiplier
→ Reputation dominates
→ Stake amplifies (doesn't replace)
Good actions → high rep → selected more
Bad actions → low rep → selected less
NO punishment needed
Result: Reputation system via distributed intent declarations
∞
Links:
Announcement: 2026-02-18
Model: Reputation = Intent-Based Track Record
Status: 📊 Event Series → Intent Queries → Multi-Perspective → Natural Selection
∞