See Post 860: R3 Architecture for the complete distributed systems implementation using this pure series approach.
Post 860 shows how the “only series, everything derived” principle scales to:
The same principle applied everywhere: Chess solver → Distributed architecture
From Post 858: Minimal chess solver with three states
From Post 810: Universal format - everything as series
From universal-model philosophy: Compute instead of duplicate
New: Chess solver as pure series - no data structures, only time evolution
Result: Everything computed on demand, nothing stored except series
class MinimalChessSolver:
def __init__(self):
self.transposition_table = {} # ❌ Dictionary
self.positions_explored = 0 # ❌ Counter
self.time_budget = 60 # ❌ State variable
Problems:
Universal-model philosophy:
class ChessGameSeries:
"""
Chess game = single series evolving over time
No other data structures needed
"""
def __init__(self):
# Single series: list of game states
self.series = []
def append(self, state):
"""
Add new state at time t
state = {
't': time,
'position': FEN string,
'move': move made,
'eval': evaluation,
'confidence': C value,
'entropy': random component
}
"""
self.series.append(state)
def at(self, t):
"""
Get state at time t
Compute on demand if needed
"""
if t < len(self.series):
return self.series[t]
else:
# Compute future state
return self.compute_state(t)
Everything in series:
Nothing else stored.
Post 858 approach (duplicate):
# Store in dictionary
self.transposition_table[position] = move
# Later, look up
if position in self.transposition_table:
return self.transposition_table[position]
Post 859 approach (compute):
def has_seen_position(self, position, series):
"""
Check if position appears in series
Compute on demand, don't store
"""
for state in series:
if state['position'] == position:
return True, state['t']
return False, None
def best_move_for_position(self, position, series):
"""
Find best move for position from series
Compute from series history, don't lookup dictionary
"""
matches = [
state for state in series
if state['position'] == position
]
if not matches:
return None
# Return move with best evaluation
best = max(matches, key=lambda s: s['eval'])
return best['move']
Key difference:
Post 858 approach (duplicate):
self.positions_explored = 0
# Increment counter
self.positions_explored += 1
# Check count
if self.positions_explored > budget:
stop()
Post 859 approach (compute):
def positions_explored(series):
"""
Count positions from series
No counter needed
"""
return len(series)
def under_budget(series, budget):
"""
Check if under budget
Compute from series length
"""
return len(series) < budget
No counter variable. Just compute from series length.
Post 858 approach (duplicate):
self.time_budget = 60
start_time = time.now()
# Later
elapsed = time.now() - start_time
if elapsed > self.time_budget:
stop()
Post 859 approach (compute):
def time_elapsed(series):
"""
Compute time from series timestamps
No variables needed
"""
if len(series) == 0:
return 0
t_start = series[0]['t']
t_now = series[-1]['t']
return t_now - t_start
def time_per_move(series):
"""
Compute average time per move
"""
if len(series) <= 1:
return 0
return time_elapsed(series) / len(series)
def time_remaining(series, budget):
"""
Compute remaining time
"""
return budget - time_elapsed(series)
No time variable. Compute from series timestamps.
Post 858 approach:
# Compute and store
eval_score = self.evaluate(position)
self.store(position, eval_score) # Store it
Post 859 approach:
def evaluate(position):
"""
Compute evaluation on demand
Don't store it
"""
material = material_balance(position)
positional = positional_score(position)
return material + positional
def evaluate_at_t(series, t):
"""
Evaluate position at time t
Compute from series
"""
state = series[t]
return evaluate(state['position'])
Compute evaluation every time needed. Don’t store.
Post 858 approach:
eval_score = self.evaluate(position)
if eval_score >= 2.0:
confidence = 1 # Store confidence
Post 859 approach:
def confidence(series, t):
"""
Compute confidence at time t
From evaluation, not stored
"""
eval_score = evaluate_at_t(series, t)
if eval_score >= 2.0:
return 1 # Confident
else:
return eval_score / 2.0 # Proportional
def is_confident(series, t):
"""
Check if confident
Compute from series
"""
return confidence(series, t) >= 0.8
Confidence computed from evaluation. Not stored separately.
Post 858 approach:
if position not in self.transposition_table:
information = 0 # Store flag
else:
information = 1
Post 859 approach:
def has_information(series, position):
"""
Check if position seen before
Compute from series search
"""
for state in series:
if state['position'] == position:
return 1 # Have information
return 0 # No information
def information_at_t(series, t):
"""
Information level at time t
"""
current_position = series[t]['position']
# Search earlier in series
for i in range(t):
if series[i]['position'] == current_position:
return 1 # Seen before
return 0 # Novel position
Information computed by searching series. Not stored.
def rate_limiter_economic(series, budget):
"""
Economic limiter: time remaining
Compute from series
"""
remaining = time_remaining(series, budget)
total = budget
return remaining / total # 0.0 to 1.0
def rate_limiter_objective(series, t):
"""
Objective limiter: position quality
Compute from evaluation
"""
eval_score = evaluate_at_t(series, t)
if abs(eval_score) < 0.5:
return 1.0 # Critical position
elif abs(eval_score) < 1.5:
return 0.6 # Moderate
else:
return 0.2 # One-sided
def rate_limiter_w_tracking(series, budget):
"""
W tracking: positions explored
Compute from series length
"""
explored = len(series)
ratio = explored / budget
if ratio < 0.5:
return 1.0
elif ratio < 0.9:
return 0.5
else:
return 0.1
def rate_limiter_topology(series, t):
"""
Topology: legal moves
Compute from position
"""
position = series[t]['position']
legal_moves = count_legal_moves(position)
return min(1.0, legal_moves / 50)
def combined_rate_limiter(series, t, budget):
"""
Combine all four limiters
All computed from series
"""
R = (
rate_limiter_economic(series, budget) * 0.3 +
rate_limiter_objective(series, t) * 0.3 +
rate_limiter_w_tracking(series, budget) * 0.2 +
rate_limiter_topology(series, t) * 0.2
)
return R
All rate limiters computed from series. No state variables.
class PureSeriesChessSolver:
"""
Chess solver using only series
Compute everything on demand
"""
def __init__(self):
# Only series - no other data structures
self.series = []
def play_move(self, position, budget=60):
"""
Choose move using three-state decision
Everything computed from series
"""
t = len(self.series)
# STATE 1: Check confidence (computed from evaluation)
eval_score = evaluate(position)
if eval_score >= 2.0:
# Confident - execute immediately
move = self.execute_immediately(position)
# STATE 2: Check information (computed from series)
elif not has_information(self.series, position):
# No information - randomize
move = self.randomize(position)
# STATE 3: Search with rate limiters (computed from series)
else:
# Have info, not confident - search
R = combined_rate_limiter(self.series, t, budget)
depth = self.adaptive_depth(R)
move = self.search(position, depth)
# Add to series
self.append_to_series(t, position, move, eval_score)
return move
def execute_immediately(self, position):
"""
STATE 1: Confident execution
No data structures, just compute best move
"""
legal = generate_legal_moves(position)
# Evaluate each move
evaluations = [
(move, evaluate(apply_move(position, move)))
for move in legal
]
# Return best
best_move, _ = max(evaluations, key=lambda x: x[1])
return best_move
def randomize(self, position):
"""
STATE 2: Random exploration
No storage, just random selection
"""
legal = generate_legal_moves(position)
return random.choice(legal)
def search(self, position, depth):
"""
STATE 3: Alpha-beta search
No transposition table, pure recursive computation
"""
best_move, _ = self.alpha_beta(
position,
depth,
-999,
999,
True
)
return best_move
def alpha_beta(self, position, depth, alpha, beta, maximizing):
"""
Alpha-beta without transposition table
Pure computation
"""
if depth == 0:
return None, evaluate(position)
legal = generate_legal_moves(position)
if maximizing:
max_eval = -999
best_move = None
for move in legal:
next_pos = apply_move(position, move)
_, eval_score = self.alpha_beta(
next_pos,
depth - 1,
alpha,
beta,
False
)
if eval_score > max_eval:
max_eval = eval_score
best_move = move
alpha = max(alpha, eval_score)
if beta <= alpha:
break
return best_move, max_eval
else:
min_eval = 999
best_move = None
for move in legal:
next_pos = apply_move(position, move)
_, eval_score = self.alpha_beta(
next_pos,
depth - 1,
alpha,
beta,
True
)
if eval_score < min_eval:
min_eval = eval_score
best_move = move
beta = min(beta, eval_score)
if beta <= alpha:
break
return best_move, min_eval
def adaptive_depth(self, R):
"""
Compute search depth from rate limiter
No state, pure function
"""
if R > 0.7:
return 5
elif R > 0.4:
return 3
else:
return 1
def append_to_series(self, t, position, move, eval_score):
"""
Add state to series
Single source of truth
"""
state = {
't': t,
'position': position,
'move': move,
'eval': eval_score,
'timestamp': time.time()
}
self.series.append(state)
That’s it. ~100 lines. No data structures except series.
Post 858 (stores data):
class MinimalChessSolver:
def __init__(self):
self.transposition_table = {} # Dictionary
self.positions_explored = 0 # Counter
self.time_budget = 60 # Variable
Post 859 (computes data):
class PureSeriesChessSolver:
def __init__(self):
self.series = [] # Only series
# Everything else computed on demand from series
Removed:
Added:
1. No duplication:
# Post 858: Position stored in series AND dictionary
self.series.append(state)
self.transposition_table[position] = move # Duplicate!
# Post 859: Position stored once in series
self.series.append(state) # Single source of truth
2. No synchronization issues:
# Post 858: Must keep dictionary and series in sync
self.series.append(state)
self.transposition_table[position] = move # Must match!
# Post 859: Series is always consistent
self.series.append(state) # Done - always in sync
3. Simpler state:
# Post 858: Multiple state variables
transposition_table = {...}
positions_explored = 42
time_budget = 60
# Which is source of truth?
# Post 859: One series
series = [...] # Everything here
4. Time travel:
# Post 859: Can compute state at any time t
state_at_t5 = series[5]
state_at_t10 = series[10]
# Can recompute anything from series
eval_at_t5 = evaluate(series[5]['position'])
Post 810 formula:
data(t+1, p) = f(data(t, p)) + entropy(p)
Applied to chess:
def evolve_series(series, t, entropy):
"""
Chess series evolution
Following Post 810 universal format
"""
if t == 0:
# Initial state
return initial_position()
# Current state
current = series[t-1]
# Deterministic component: f(data(t))
position = current['position']
confidence = compute_confidence(position)
information = compute_information(series, position)
# Entropy component: random exploration
if information == 0:
# STATE 2: Inject entropy
move = random_move(position, entropy)
elif confidence >= 0.8:
# STATE 1: Deterministic (no entropy)
move = best_move(position)
else:
# STATE 3: Guided search (small entropy in move ordering)
move = search_move(position, entropy)
# Next state
next_position = apply_move(position, move)
next_eval = evaluate(next_position)
return {
't': t,
'position': next_position,
'move': move,
'eval': next_eval,
'entropy': entropy
}
Chess game = series evolving via Post 810 formula.
From universal-model README:
Compute values on demand
Don't store redundant data
Single source of truth: series
Applied to chess:
Traditional approach:
Universal approach:
Benefits:
Not necessarily:
1. Series search is fast:
# Linear search through series
# For chess game: ~100 moves average
# 100 comparisons = negligible
# Dictionary lookup:
# O(1) but with overhead
# Hash computation, collision handling
# For small n, linear ≈ hash
2. No memory allocation:
# Post 858: Allocate dictionary entries
transposition_table[pos] = move # Memory allocation
# Post 859: No allocation
# Just search existing series
3. Cache-friendly:
# Series: Sequential memory access
# Good cache locality
# Dictionary: Random memory access
# Poor cache locality
4. Evaluation is cheap:
# Material count: O(64) square scan
# Positional score: O(64) square scan
# Total: ~100 operations
# Lookup overhead:
# Hash function: ~50 operations
# Not much savings
Compute when:
Store when:
For chess:
Most things: Compute, not store.
# Query any value from series
def get_position_at_t(series, t):
"""Position at time t"""
return series[t]['position']
def get_move_at_t(series, t):
"""Move at time t"""
return series[t]['move']
def get_evaluation_at_t(series, t):
"""Evaluation at time t (compute if not stored)"""
if 'eval' in series[t]:
return series[t]['eval']
else:
return evaluate(series[t]['position'])
def get_all_positions(series):
"""All positions in game"""
return [state['position'] for state in series]
def get_move_history(series):
"""All moves in order"""
return [state['move'] for state in series]
def get_evaluation_series(series):
"""Evaluation over time"""
return [
evaluate(state['position'])
for state in series
]
def find_position_occurrences(series, position):
"""Times position appeared"""
return [
state['t']
for state in series
if state['position'] == position
]
Series answers all questions. No other data needed.
# All functions pure (no side effects)
def evaluate(position):
"""Pure: same input → same output"""
return material_balance(position) + positional_score(position)
def has_information(series, position):
"""Pure: only reads series, doesn't modify"""
return any(s['position'] == position for s in series)
def rate_limiter(series, t, budget):
"""Pure: computes from series"""
return compute_R(series, t, budget)
def choose_move(series, position, budget):
"""Pure: returns move, doesn't mutate"""
# Compute everything from inputs
eval_score = evaluate(position)
info = has_information(series, position)
R = rate_limiter(series, len(series), budget)
# Return move based on computations
if eval_score >= 2.0:
return execute_immediately(position)
elif info == 0:
return randomize(position)
else:
return search(position, adaptive_depth(R))
All pure functions. Easier to:
def query_series(series):
"""
Rich queries from single series
No indexes, no caching - pure computation
"""
return {
# Basic queries
'game_length': len(series),
'current_position': series[-1]['position'],
'current_eval': evaluate(series[-1]['position']),
# Time queries
'time_elapsed': time_elapsed(series),
'avg_time_per_move': time_per_move(series),
# Position queries
'positions_explored': len(series),
'unique_positions': len(set(s['position'] for s in series)),
'repeated_positions': find_repetitions(series),
# Evaluation queries
'max_eval': max(evaluate(s['position']) for s in series),
'min_eval': min(evaluate(s['position']) for s in series),
'eval_trend': [evaluate(s['position']) for s in series],
# Move queries
'most_common_move': most_common_move(series),
'move_diversity': len(set(s['move'] for s in series)),
# State queries
'confident_moves': sum(1 for s in series if evaluate(s['position']) >= 2.0),
'exploratory_moves': sum(1 for s in series if not has_info_before(series, s)),
'search_moves': len(series) - confident_moves - exploratory_moves
}
Everything computable from series. No separate analytics storage.
What We’ve Achieved:
1. Single data structure:
2. Compute not duplicate:
3. Universal-model philosophy:
4. Same functionality as Post 858:
5. Simpler implementation:
The formula:
Chess solver = {
series: [] // Only data structure
Everything else computed:
position_at(t) = series[t]['position']
has_information(pos) = search_series(pos)
rate_limiter(t) = f(series, t)
move = choose(series, position)
Append to series:
series.append(new_state)
}
Minimal sufficient structure:
From Post 810: data(t+1) = f(data(t)) + entropy
Applied to chess: state(t+1) = evolve(state(t)) + random_move
Pure series. Pure functions. Pure chess.
∞
References:
Created: 2026-02-17
Status: ♟️ Pure series chess solver
∞