From Post 826: EigenAI hybrid intelligence (container approach ❌)
From Post 830: Language as node graph (correct approach ✅)
Now: EigenAI as pure node network
No containers. Pure nodes. Emergent intelligence.
class EigenAI: # ❌ Container
def __init__(self):
self.language_layer = {} # ❌ Layer container
self.universal_layer = {} # ❌ Layer container
self.graph_layer = {} # ❌ Layer container
self.query_layer = {} # ❌ Layer container
Problems:
Concept Node:
# "proof" concept = node
proof_concept = {
'type': 'concept',
'term': 'proof',
'domains': [], # Which domains use this concept
'series': [], # Evolution history
'links': [] # Related concepts
}
# Track usage across domains
proof_concept['series'].append({
't': 0,
'domain_count': 0,
'total_occurrences': 0,
'confidence': 0.0
})
# After learning from crypto domain
proof_concept['domains'].append('cryptography')
proof_concept['series'].append({
't': 100,
'domain_count': 1,
'total_occurrences': 47,
'confidence': 0.78
})
# After learning from math domain
proof_concept['domains'].append('mathematics')
proof_concept['series'].append({
't': 200,
'domain_count': 2,
'total_occurrences': 156,
'confidence': 0.92,
'universal': True # Appears in multiple domains!
})
Domain Node:
# "cryptography" domain = node
crypto_domain = {
'type': 'domain',
'name': 'cryptography',
'series': [],
'links': [] # Concepts in this domain
}
# Domain evolution
crypto_domain['series'].append({
't': 0,
'concepts': 0,
'corpus_size': 0,
'confidence': 0.0
})
crypto_domain['series'].append({
't': 500,
'concepts': 1234,
'corpus_size': 50_000_000, # 50MB learned
'confidence': 0.89,
'queries_served': 456
})
Relationship Node:
# Relationship between concepts = node
proof_of_stake = {
'type': 'relationship',
'from_concept': 'proof',
'to_concept': 'stake',
'series': [],
'links': []
}
# Track co-occurrence strength
proof_of_stake['series'].append({
't': 0,
'co_occurrences': 0,
'strength': 0.0
})
proof_of_stake['series'].append({
't': 300,
'co_occurrences': 89,
'strength': 0.87,
'contexts': ['blockchain', 'consensus']
})
Query Node:
# Query = node created when user asks
query_node = {
'type': 'query',
'text': 'Explain Proof of Stake',
'keywords': ['proof', 'stake'],
'series': [],
'links': [] # Links to concept nodes used
}
# Query processing creates series
query_node['series'].append({
't': 1000,
'concepts_found': ['proof', 'stake', 'consensus'],
'domains_involved': ['cryptography', 'blockchain'],
'confidence': 0.94,
'response_generated': True
})
From Post 810: Each node follows data(n+1, p) = f(data(n, p)) + e(p)
# t=0: Initialize empty graph
intelligence_graph = []
# Learn from corpus (e.g., crypto textbooks)
corpus = load_corpus('bitcoin-whitepaper.txt')
# Extract concepts = create concept nodes
def learn_from_corpus(graph, corpus, domain):
"""
Learn = create concept nodes from corpus
NOT: Store in layer containers
BUT: Create nodes for each discovered concept
"""
# Extract concepts from text
concepts = extract_concepts(corpus)
for concept_text in concepts:
# Create or find concept node
concept_node = find_or_create_concept(graph, concept_text)
# Add domain if new
if domain not in concept_node['domains']:
concept_node['domains'].append(domain)
# Update series
concept_node['series'].append({
't': len(graph),
'domain': domain,
'occurrences': count_occurrences(concept_text, corpus),
'context': extract_context(concept_text, corpus)
})
# Link to domain node
domain_node = find_or_create_domain(graph, domain)
create_link(concept_node, domain_node, 'appears_in')
# Discover relationships
for concept1, concept2 in find_co_occurrences(concepts, corpus):
relationship_node = create_relationship(graph, concept1, concept2)
relationship_node['series'].append({
't': len(graph),
'domain': domain,
'strength': calculate_strength(concept1, concept2, corpus)
})
return graph
# Learn!
intelligence_graph = learn_from_corpus(intelligence_graph, corpus, 'cryptography')
# Graph grows additively
def find_universal_concepts(intelligence_graph, threshold=0.6):
"""
Find concepts appearing in multiple domains
Like pidgin emergence from language intersection (Post 830)
"""
# Get all concept nodes
concept_nodes = [n for n in intelligence_graph if n['type'] == 'concept']
# Get all domains
all_domains = set()
for node in intelligence_graph:
if node['type'] == 'domain':
all_domains.add(node['name'])
total_domains = len(all_domains)
universal_concepts = []
for concept in concept_nodes:
# How many domains use this concept?
domain_count = len(concept['domains'])
coverage = domain_count / total_domains
if coverage >= threshold:
# Mark as universal
concept['universal'] = True
concept['coverage'] = coverage
# Update series
concept['series'].append({
't': current_time(),
'status': 'universal',
'domain_coverage': coverage,
'total_domains': domain_count
})
universal_concepts.append(concept)
return universal_concepts
# After learning from multiple domains
crypto_graph = learn_from_corpus(graph, crypto_corpus, 'cryptography')
math_graph = learn_from_corpus(graph, math_corpus, 'mathematics')
physics_graph = learn_from_corpus(graph, physics_corpus, 'physics')
# Find universals
universal = find_universal_concepts(graph, threshold=0.6)
# → ['proof', 'system', 'function', 'structure', 'process', ...]
# These nodes are gold (universal across domains)
def query_intelligence(graph, query_text):
"""
Query = traverse graph from keyword nodes
NOT: Search in layer containers
BUT: Start at concept nodes, follow links
"""
# Create query node
query_node = {
'type': 'query',
'text': query_text,
'keywords': extract_keywords(query_text),
'series': [],
'links': []
}
graph.append(query_node)
# Find concept nodes for keywords
concept_nodes = []
for keyword in query_node['keywords']:
node = find_concept_node(graph, keyword)
if node:
concept_nodes.append(node)
# Link query to concept
create_link(query_node, node, 'uses_concept')
# Traverse from concept nodes
context = {
'concepts': [],
'domains': set(),
'relationships': [],
'universal_concepts': [],
'confidence': 0.0
}
for concept_node in concept_nodes:
# Add concept
context['concepts'].append(concept_node['term'])
# Add domains this concept appears in
context['domains'].update(concept_node['domains'])
# Check if universal
if concept_node.get('universal', False):
context['universal_concepts'].append(concept_node['term'])
# Follow links to related concepts (depth 2)
for link in concept_node['links']:
if link['type'] == 'relates_to':
related_node = find_node_by_id(graph, link['to'])
context['concepts'].append(related_node['term'])
# Add relationship
context['relationships'].append({
'from': concept_node['term'],
'to': related_node['term'],
'strength': link['strength']
})
# Calculate confidence from graph structure
context['confidence'] = calculate_confidence(context)
# Update query node series
query_node['series'].append({
't': len(graph),
'concepts_found': len(context['concepts']),
'domains': list(context['domains']),
'confidence': context['confidence']
})
return context
# Example
context = query_intelligence(graph, "Explain Proof of Stake")
# → {
# 'concepts': ['proof', 'stake', 'consensus', 'validator', ...],
# 'domains': {'cryptography', 'blockchain'},
# 'universal_concepts': ['proof', 'system'],
# 'confidence': 0.94
# }
# Someone wants to add biology intelligence
# They just create new nodes!
def add_biology_intelligence(shared_graph, bio_corpus):
"""
Add biology intelligence = add biology nodes to graph
NOT: Create new EigenAI subclass
BUT: Add nodes with biology domain
"""
# Learn biology concepts (creates nodes)
bio_graph = learn_from_corpus(shared_graph, bio_corpus, 'biology')
# Biology concepts now in shared graph
# Universal concepts automatically discovered
# Cross-domain queries now work!
return bio_graph
# Add biology
bio_nodes = add_biology_intelligence(intelligence_graph, bio_corpus)
# Add code
code_nodes = add_biology_intelligence(intelligence_graph, code_corpus)
# Add philosophy
phil_nodes = add_biology_intelligence(intelligence_graph, phil_corpus)
# Graph naturally grows
# Universal concepts emerge at intersections
# No modification of existing nodes needed
# Each specialization = filtered view of shared graph
class IntelligenceSpecialization:
"""
Specialization = subset of nodes focused on domain
NOT a separate system
BUT a view into shared graph
"""
def __init__(self, shared_graph, domain):
self.shared_graph = shared_graph
self.domain = domain
def get_domain_nodes(self):
"""Get nodes relevant to this domain"""
return [
n for n in self.shared_graph
if self.domain in n.get('domains', [])
]
def query(self, query_text):
"""Query focused on this domain"""
# Get domain-specific nodes
domain_nodes = self.get_domain_nodes()
# Query using domain subgraph
context = query_intelligence(domain_nodes, query_text)
# But can still access universal concepts from shared graph
universal = [
n for n in self.shared_graph
if n.get('universal', False)
]
# Combine domain + universal
return {
'domain_context': context,
'universal_available': universal,
'confidence': context['confidence']
}
# Create specializations (views, not copies)
crypto_ai = IntelligenceSpecialization(intelligence_graph, 'cryptography')
bio_ai = IntelligenceSpecialization(intelligence_graph, 'biology')
code_ai = IntelligenceSpecialization(intelligence_graph, 'code')
# Each queries its subdomain
crypto_answer = crypto_ai.query("What is Proof of Stake?")
bio_answer = bio_ai.query("How do cells divide?")
# But they share universal concepts
def calculate_confidence(context):
"""
Confidence emerges from graph structure
High confidence when:
- Many concept nodes found
- Strong relationships exist
- Multiple domains involved
- Universal concepts present
"""
# Concept coverage
concept_score = min(len(context['concepts']) / 10.0, 1.0)
# Domain coverage
domain_score = min(len(context['domains']) / 3.0, 1.0)
# Relationship strength
if context['relationships']:
avg_strength = sum(r['strength'] for r in context['relationships']) / len(context['relationships'])
relationship_score = avg_strength
else:
relationship_score = 0.0
# Universal concept bonus
universal_score = min(len(context['universal_concepts']) / 2.0, 1.0)
# Weighted combination
confidence = (
concept_score * 0.3 +
domain_score * 0.25 +
relationship_score * 0.25 +
universal_score * 0.2
)
return confidence
# Example: High confidence query
context = query_intelligence(graph, "Compare evolution to optimization")
# Concepts: evolution, optimization, selection, adaptation, fitness
# Domains: biology, computer-science, mathematics
# Universal: system, function, process
# Confidence: 0.95 ✅
# Example: Low confidence query
context = query_intelligence(graph, "Explain quantum knitting")
# Concepts: quantum (found), knitting (not found)
# Domains: physics (partial)
# Universal: none relevant
# Confidence: 0.23 ❌
# Each node announces its capabilities
def announce_to_dht(intelligence_graph, eigendht):
"""
Announce which domains this intelligence graph covers
"""
# Calculate statistics
domains = set()
concept_count = 0
universal_count = 0
for node in intelligence_graph:
if node['type'] == 'domain':
domains.add(node['name'])
elif node['type'] == 'concept':
concept_count += 1
if node.get('universal', False):
universal_count += 1
# Announce to DHT
announcement = {
'node_type': 'eigenai',
'domains': list(domains),
'concept_count': concept_count,
'universal_count': universal_count,
'confidence_avg': calculate_average_confidence(intelligence_graph),
'queries_served': get_query_count(intelligence_graph)
}
eigendht.announce(announcement)
return announcement
# User queries DHT
query = "Explain photosynthesis"
eigendht_query = {
'keywords': ['photosynthesis'],
'required_domains': ['biology']
}
# DHT finds nodes with biology domain
matching_nodes = eigendht.find_nodes(eigendht_query)
# → [node_A (biology), node_B (biology+chemistry), ...]
# Route to highest confidence node
best_node = max(matching_nodes, key=lambda n: n['confidence_avg'])
def store_intelligence_graph(graph):
"""
Store intelligence graph in R³
Each node = series stored separately
Links = references
"""
for node in graph:
if node['type'] == 'concept':
r3_store(
key=f"concept:{node['term']}",
series=node['series'],
links=node['links'],
metadata={'domains': node['domains'], 'universal': node.get('universal', False)}
)
elif node['type'] == 'domain':
r3_store(
key=f"domain:{node['name']}",
series=node['series'],
links=node['links']
)
elif node['type'] == 'relationship':
r3_store(
key=f"rel:{node['from_concept']}:{node['to_concept']}",
series=node['series'],
links=node['links']
)
elif node['type'] == 'query':
r3_store(
key=f"query:{hash(node['text'])}",
series=node['series'],
links=node['links']
)
def load_intelligence_graph(domain=None):
"""
Load intelligence graph from R³
Can load specific domain or entire graph
"""
if domain:
# Load domain subgraph
domain_node = r3_load(f"domain:{domain}")
# Load concepts in this domain
concepts = []
for link in domain_node['links']:
if link['type'] == 'contains':
concept = r3_load(f"concept:{link['to']}")
concepts.append(concept)
return {'domain': domain_node, 'concepts': concepts}
else:
# Load entire graph (or use DHT to discover nodes)
all_nodes = r3_query("type:*")
return all_nodes
# Expansion 1: Add new domain
def add_medical_intelligence(graph, medical_corpus):
# Just learn from corpus
# Creates medical concept nodes
# Links to existing universal concepts
# No modification of existing nodes
return learn_from_corpus(graph, medical_corpus, 'medicine')
# Expansion 2: Add new concept type
def add_temporal_concepts(graph):
"""
Add time-aware concept nodes
"""
for concept_node in graph:
if concept_node['type'] == 'concept':
# Add temporal tracking
temporal_node = {
'type': 'temporal_concept',
'base_concept': concept_node['term'],
'series': [], # Track how concept evolved over time
'links': []
}
# Link to base concept
create_link(temporal_node, concept_node, 'temporal_view')
graph.append(temporal_node)
return graph
# Expansion 3: Add reasoning nodes
def add_reasoning_nodes(graph):
"""
Add nodes that represent logical inferences
"""
for concept1 in get_concepts(graph):
for concept2 in get_related_concepts(concept1):
# Can we infer concept2 from concept1?
if can_infer(concept1, concept2):
inference_node = {
'type': 'inference',
'premise': concept1['term'],
'conclusion': concept2['term'],
'series': [],
'links': []
}
graph.append(inference_node)
return graph
# All additive!
# No existing nodes modified
# New capabilities just add new node types
# Query spanning multiple domains
query = "Compare biological evolution to code refactoring"
# Traditional AI: Doesn't understand connection
# EigenAI graph: Finds universal concepts
# Query processing:
keywords = ['biological', 'evolution', 'code', 'refactoring']
# Find concept nodes
bio_concepts = find_concepts(graph, 'biology')
code_concepts = find_concepts(graph, 'programming')
# Find intersection (universal concepts)
shared = find_universal_in_both(bio_concepts, code_concepts)
# → ['adaptation', 'optimization', 'selection', 'improvement', 'iteration']
# Generate response using:
# - Biology concepts (evolution, species, fitness)
# - Code concepts (refactoring, patterns, optimization)
# - Universal concepts (adaptation, selection, improvement)
# - Relationships between them
response = {
'comparison': {
'biological_evolution': {
'process': 'Natural selection improves species fitness',
'concepts': ['mutation', 'selection', 'adaptation'],
'domain': 'biology'
},
'code_refactoring': {
'process': 'Developers improve code quality',
'concepts': ['patterns', 'optimization', 'simplification'],
'domain': 'programming'
},
'universal_patterns': [
'Both iteratively improve through selection',
'Both adapt to environment/requirements',
'Both optimize for fitness/quality',
'Both accumulate improvements over time'
]
},
'confidence': 0.91,
'domains_used': ['biology', 'programming'],
'universal_concepts_used': ['adaptation', 'optimization', 'selection']
}
# Only possible because graph structure reveals universal patterns!
# Deploy intelligence node
def deploy_intelligence_node(domain, corpus, stake):
"""
Deploy = create specialized intelligence subgraph
"""
# Create graph
graph = []
# Learn from corpus (creates nodes)
graph = learn_from_corpus(graph, corpus, domain)
# Find universal concepts
universal = find_universal_concepts(graph)
# Calculate quality metrics
metrics = {
'concepts': len([n for n in graph if n['type'] == 'concept']),
'domains': len(set(n.get('domain', '') for n in graph)),
'universal': len(universal),
'confidence_avg': calculate_average_confidence(graph)
}
# Stake to serve
staking_record = {
'graph': graph,
'domain': domain,
'stake': stake,
'metrics': metrics,
'queries_served': 0,
'revenue': 0
}
# Announce to DHT
eigendht.announce(staking_record)
return staking_record
# Example
crypto_node = deploy_intelligence_node(
domain='cryptography',
corpus=load_corpus('crypto-textbooks'),
stake=150 # EIGEN tokens
)
# Serve queries
query_result = query_intelligence(crypto_node['graph'], "Explain PoS")
# Earn revenue
crypto_node['queries_served'] += 1
crypto_node['revenue'] += 0.1 # EIGEN per query
# Higher confidence → More queries routed → Higher revenue
# Initialize shared graph
shared_intelligence_graph = []
# Node 1: Crypto specialist
crypto_graph = learn_from_corpus(
shared_intelligence_graph,
load_corpus('bitcoin-whitepaper.txt'),
'cryptography'
)
# Node 2: Biology specialist
bio_graph = learn_from_corpus(
shared_intelligence_graph,
load_corpus('biology-textbook.txt'),
'biology'
)
# Node 3: Code specialist
code_graph = learn_from_corpus(
shared_intelligence_graph,
load_corpus('github-repos.txt'),
'programming'
)
# Universal concepts emerge automatically
universal = find_universal_concepts(shared_intelligence_graph, threshold=0.6)
# → ['system', 'function', 'process', 'structure', 'optimization', ...]
# Query 1: Domain-specific
result = query_intelligence(shared_intelligence_graph, "What is SHA-256?")
# Domains: cryptography
# Confidence: 0.95
# Uses: crypto-specific concepts
# Query 2: Cross-domain
result = query_intelligence(
shared_intelligence_graph,
"How is blockchain like DNA?"
)
# Domains: cryptography, biology
# Confidence: 0.87
# Universal concepts: system, replication, information, verification
# Shows: Both store information, both replicate, both have verification
# Query 3: Novel connection
result = query_intelligence(
shared_intelligence_graph,
"Apply genetic algorithms to optimize smart contracts"
)
# Domains: biology, programming, cryptography
# Confidence: 0.79
# Universal concepts: optimization, selection, adaptation, evolution
# Combines all three domains using universal patterns!
Not:
But:
The Process:
Unlimited additive expansion:
From Post 830: No containers, pure node evolution
From Post 826: EigenAI concept (container approach ❌)
Now (Post 831): EigenAI as pure node network (correct ✅)
Key Insight:
Intelligence emerges from graph structure of concept nodes linked by relationship nodes. Universal concepts appear at domain intersections. Permissionless expansion via additive node creation.
No containers. No layers. Pure nodes. Emergent intelligence.
References:
Created: 2026-02-15
Status: 🧠 EIGENAI AS NODE NETWORK
∞