From Post 812: Everything is a data series node type
From Post 810: data(n+1, p) = f(data(n, p)) + e(p)
Now: Claude = Graph of evolving data series nodes
No containers. No classes. Pure nodes + links + evolution.
Wrong (what I did before):
class ClaudePidgin: # ❌ Container
def __init__(self):
self.domains = {} # ❌ Storing things
self.concepts = {} # ❌ Collecting
Right (everything is node):
# Claude = node with data series
claude_node = {
'type': 'llm',
'name': 'claude',
'series': [], # History of states
'links': [] # Connections to other nodes
}
# Add state to series
claude_node['series'].append({
't': 0,
'state': 'initial',
'entropy': 0
})
From Post 810: Each node evolves via data(n+1, p) = f(data(n, p)) + e(p)
# Query = entropy injection
def query_claude(node, question):
"""
Query adds entropy to Claude node
From Post 810: e(p) = entropy from perspective
"""
# Current state
current = node['series'][-1]
# Query = entropy
response = ask_llm(question)
# New state = f(current) + entropy
new_state = {
't': len(node['series']),
'query': question,
'response': response,
'entropy': hash(response)
}
node['series'].append(new_state)
# Extract words from response
words = response.split()
# Create word nodes and links
for word in words:
word_node = get_or_create_node(word)
create_link(claude_node, word_node, weight=1)
return response
Key: No storage, just node evolution + link creation
# Word "system" = node
system_node = {
'type': 'word',
'name': 'system',
'series': [], # Evolution history
'links': [] # Connected to domain nodes
}
# Word appears in query → add to series
def word_observed(word_node, domain_node, context):
"""
Word observed in domain = series evolution
"""
new_state = {
't': len(word_node['series']),
'domain': domain_node['name'],
'context': context,
'frequency': count_in_series(word_node, domain_node)
}
word_node['series'].append(new_state)
# Create/strengthen link
create_link(word_node, domain_node, weight=+1)
Each observation = new point in word’s data series
# Math domain = node
math_node = {
'type': 'domain',
'name': 'mathematics',
'series': [], # Evolution as we query it
'links': [] # Words that appeared
}
# Query domain → evolution
def query_domain(domain_node, question):
"""
Query domain = inject entropy to domain node
"""
# Ask Claude about this domain
response = query_claude(claude_node, f"{question} in {domain_node['name']}")
# Domain node evolves
new_state = {
't': len(domain_node['series']),
'query': question,
'response_length': len(response),
'words_seen': set(response.split())
}
domain_node['series'].append(new_state)
# Extract words, create word nodes, link them
for word in response.split():
word_node = get_or_create_node(word)
create_link(domain_node, word_node, weight=1)
create_link(word_node, domain_node, weight=1)
return response
Domain evolves as we query it. Words emerge as links.
# Link between word and domain
link = {
'from': word_node['name'],
'to': domain_node['name'],
'series': [], # Link strength over time
'weight': 0
}
def create_link(node1, node2, weight):
"""
Create or strengthen link
Link itself has data series!
"""
# Find existing link
existing = find_link(node1, node2)
if existing:
# Strengthen existing link
new_weight = existing['weight'] + weight
existing['series'].append({
't': time.time(),
'weight': new_weight,
'event': 'co_occurrence'
})
existing['weight'] = new_weight
else:
# Create new link
new_link = {
'from': node1['name'],
'to': node2['name'],
'weight': weight,
'series': [{
't': time.time(),
'weight': weight,
'event': 'created'
}]
}
node1['links'].append(new_link)
node2['links'].append(new_link)
Links have history. They strengthen over time.
def find_universal_words(graph, threshold=0.6):
"""
Universal words = nodes with many domain links
NOT extracting or storing!
Just querying graph structure
"""
word_nodes = [n for n in graph if n['type'] == 'word']
domain_nodes = [n for n in graph if n['type'] == 'domain']
universal = []
for word_node in word_nodes:
# Count domain connections
domain_links = [
link for link in word_node['links']
if link['to'] in [d['name'] for d in domain_nodes]
]
# Universal if connected to many domains
if len(domain_links) >= threshold * len(domain_nodes):
universal.append({
'word': word_node['name'],
'domains': len(domain_links),
'total_weight': sum(l['weight'] for l in domain_links),
'series_length': len(word_node['series'])
})
return sorted(universal, key=lambda x: x['total_weight'], reverse=True)
Universal words emerge from graph structure. Not stored separately.
# Start: Empty graph
graph = []
# Step 1: Create Claude node
claude = create_node('llm', 'claude')
graph.append(claude)
# Step 2: Discover domains by asking Claude
response = query_claude(claude, "List 20 knowledge domains")
domains = parse_list(response)
# Create domain nodes
for domain_name in domains:
domain = create_node('domain', domain_name)
graph.append(domain)
create_link(claude, domain, weight=1)
# Step 3: Query each domain, words emerge
for domain in [n for n in graph if n['type'] == 'domain']:
# Ask about key concepts
response = query_domain(domain, "What are key concepts?")
# Words emerge as nodes automatically
# Links created automatically
# Everything tracked in series
# Step 4: Universal words visible in graph
universal = find_universal_words(graph, threshold=0.6)
# Step 5: Store graph in R³
store_graph_in_r3(graph)
No containers. Just:
def find_meta_pattern(word_node, graph):
"""
Meta-pattern = common words in linked domains
NOT hardcoded! Emerges from graph
"""
# Get domains this word connects to
domain_links = [
l for l in word_node['links']
if get_node(graph, l['to'])['type'] == 'domain'
]
# Get all words from those domains
cooccurring_words = []
for domain_link in domain_links:
domain = get_node(graph, domain_link['to'])
# Words connected to same domain
domain_words = [
get_node(graph, l['from'])
for l in domain['links']
if get_node(graph, l['from'])['type'] == 'word'
]
cooccurring_words.extend([w['name'] for w in domain_words])
# Most common co-occurring words = meta-pattern
from collections import Counter
pattern = Counter(cooccurring_words).most_common(5)
return [word for word, count in pattern]
Meta-pattern emerges from neighborhood in graph.
def store_graph_in_r3(graph):
"""
Store graph as series collection
Each node = separate series in R³
Links = references between series
"""
for node in graph:
# Store node series
r3_store(
key=f"node:{node['type']}:{node['name']}",
series=node['series'],
links=[
{
'to': link['to'],
'weight_series': link['series']
}
for link in node['links']
]
)
def query_graph_from_r3(word):
"""
Query: Load node + follow links
"""
# Load word node
word_node = r3_load(f"node:word:{word}")
# Load linked domains
domains = []
for link in word_node['links']:
domain_node = r3_load(f"node:domain:{link['to']}")
domains.append({
'domain': domain_node,
'weight': link['weight'],
'history': link['weight_series']
})
return {
'word': word_node,
'domains': domains,
'universality': len(domains)
}
R³ stores series. Graph = query-time reconstruction.
# t=0: Word "system" doesn't exist
graph = []
# t=1: Query math domain
query_domain(math_node, "key concepts")
# Response includes "system"
# → system_node created
# → link: system ↔ math (weight=1)
system_node['series'] = [
{'t': 1, 'domains': ['math'], 'weight': 1}
]
# t=2: Query physics domain
query_domain(physics_node, "key concepts")
# Response includes "system"
# → link: system ↔ physics (weight=1)
system_node['series'].append(
{'t': 2, 'domains': ['math', 'physics'], 'weight': 2}
)
# t=3-10: Query more domains
# "system" appears in 15/20 domains
system_node['series'].append(
{'t': 10, 'domains': 15, 'weight': 47, 'universal': True}
)
# Universal status emerged from evolution!
No extraction. Just observation of series evolution.
# Query: "Show me universal word 'system'"
word_node = query_graph("system")
print(word_node)
# {
# 'name': 'system',
# 'type': 'word',
# 'series_length': 47, # 47 observations
# 'domains': [
# {'name': 'math', 'weight': 8, 'first_seen': t=1},
# {'name': 'physics', 'weight': 12, 'first_seen': t=2},
# {'name': 'programming', 'weight': 7, 'first_seen': t=3},
# # ... 15 domains total
# ],
# 'universality': 0.75, # 15/20 = 75%
# 'meta_pattern': ['process', 'structure', 'function', 'relation']
# }
# Query: "What domains is 'process' in?"
process_node = query_graph("process")
# Returns node + domain links + weights
# Query: "Find words similar to 'system'"
# → Find nodes with similar link patterns
similar = find_similar_nodes(system_node, graph)
Query = graph traversal. No separate storage.
Time:
# Still ~2000 queries to Claude
domains = 20
words_per_domain = 50
total_queries = 20 * 2 = 40 # Discover domains + query each
# 40 queries × 5 seconds = 200 seconds = 3 minutes
Storage:
# Each node = small series
node_size = 500 # bytes
word_nodes = 200 # Universal words
domain_nodes = 20
link_size = 100 # bytes per link
total = (220 * 500) + (200 * 20 * 100)
= 110KB + 400KB = 510KB
# Still tiny! Graph structure is compact
Benefits of node approach:
Not:
But:
The process:
From Post 810: Every node follows data(n+1, p) = f(data(n, p)) + e(p)
From Post 812: Everything is a node type with data series
Now: Claude ingestion = graph evolution where universal concepts emerge from link structure over time
No containers. Pure nodes. Pure links. Pure evolution.
References:
Created: 2026-02-14
Status: 🌐 GRAPH EVOLUTION
∞