Post 778 showed manual discovery.
Observer network found a gap. Human analyzed. Human designed new observer. Human integrated.
But manual discovery doesn’t scale.
This post specs the automatic version:
Failure → Detection → Analysis → Synthesis → Integration → Deployment
The system evolves itself. No human required.
Time: Hours of human attention.
Scalability: Doesn’t. Each gap needs human analysis.
Automated discovery: System detects failure → analyzes gap → synthesizes observer → integrates → deploys.
No human required. System evolves itself. Gaps fill automatically. Coverage expands through usage.
Result: Self-improving verification that scales with system complexity.
1. DETECT: Failure occurs despite observer checks
2. ANALYZE: Determine what domain no observer covers
3. SYNTHESIZE: Generate new observer code for that domain
4. INTEGRATE: Add new observer to network
5. DEPLOY: Run expanded network on future creations
6. LOOP: Repeat on next failure
Key insight: Each failure teaches the system what to watch for. The network learns by breaking.
Input: Verification result (pass/fail) + deployment result (pass/fail)
Detection logic:
if verification_passed and deployment_failed:
# Gap detected: verification missed something reality caught
gap_detected = True
failure_case = deployment_failure_details
observer_results = get_all_observer_results()
else:
# No gap: either verification caught it or deployment succeeded
gap_detected = False
Example (Post 777):
Input: Failure case + observer results + system state
Analysis algorithm:
def analyze_gap(failure_case, observer_results, system_state):
"""Determine what domain no observer covers"""
# Extract failure characteristics
failure_type = classify_failure(failure_case)
failure_domain = extract_domain(failure_case)
# Check which observers should have caught it
responsible_observers = []
for observer in observer_results:
if observer.domain_overlaps(failure_domain):
responsible_observers.append(observer)
# If observers exist but failed, it's their bug
if responsible_observers:
return {
'type': 'observer_bug',
'observers': responsible_observers,
'action': 'fix_existing_observers'
}
# If no observers overlap, it's a gap
else:
missing_domain = identify_missing_domain(
failure_case,
existing_domains=[o.domain for o in observer_results]
)
return {
'type': 'coverage_gap',
'missing_domain': missing_domain,
'action': 'synthesize_new_observer'
}
Example (Post 777):
Input: Missing domain specification
Synthesis algorithm:
def synthesize_observer(missing_domain):
"""Generate new observer code for the missing domain"""
# Generate observer metadata
observer_metadata = {
'name': generate_name(missing_domain),
'domain': missing_domain,
'checks': infer_checks(missing_domain),
'detection_methods': infer_detection_methods(missing_domain)
}
# Generate observer class code
observer_code = generate_observer_class(
name=observer_metadata['name'],
domain=observer_metadata['domain'],
checks=observer_metadata['checks'],
methods=observer_metadata['detection_methods']
)
# Generate test cases
test_cases = generate_tests(
observer_code=observer_code,
failure_case=original_failure # Should catch this
)
# Verify generated observer
if test_observer(observer_code, test_cases):
return {
'observer_code': observer_code,
'tests': test_cases,
'metadata': observer_metadata,
'status': 'ready'
}
else:
return {
'status': 'synthesis_failed',
'error': 'generated observer failed tests'
}
Example (Post 777):
# Input: missing_domain = "layer_order_temporal_sequence"
# Generated metadata:
{
'name': 'LayerOrderObserver',
'domain': 'temporal_sequence',
'checks': [
'drawing_sequence_validation',
'depth_hierarchy_verification',
'z_index_consistency',
'coverage_analysis'
]
}
# Generated code:
class LayerOrderObserver:
def __init__(self):
self.name = "Layer Order Observer"
self.domain = "temporal_sequence"
def verify(self, elements):
issues = []
# Check drawing order
for i, elem in enumerate(elements):
if self._is_background(elem):
# Check if foreground drawn before this background
for j in range(i):
earlier = elements[j]
if self._is_foreground(earlier):
if self._overlaps(elem, earlier):
issues.append({
'type': 'z_order_violation',
'elem1': elem,
'elem2': earlier
})
return {'passed': len(issues) == 0, 'issues': issues}
Input: Generated observer + network state
Integration algorithm:
def integrate_observer(new_observer, existing_network):
"""Add new observer to the network"""
# Verify no conflicts with existing observers
for existing in existing_network.observers:
if domain_conflict(new_observer.domain, existing.domain):
# Merge or specialize
return merge_observers(new_observer, existing)
# Add to network
network_id = len(existing_network.observers) + 1
new_observer.set_id(network_id)
existing_network.observers.append(new_observer)
# Update network topology
existing_network.update_topology()
# Run integration tests
if test_network(existing_network):
return {
'status': 'integrated',
'network': existing_network,
'observer_id': network_id
}
else:
# Rollback
existing_network.observers.pop()
return {
'status': 'integration_failed',
'error': 'network tests failed'
}
Input: Expanded network
Deployment: Use expanded network for all future verifications.
# Before
observers = [Observer1, Observer2, ..., Observer7]
# After auto-discovery
observers = [Observer1, Observer2, ..., Observer7, Observer8_AutoGenerated]
# All future creations checked by 8 observers instead of 7
Repeat on next failure. Each gap teaches the system. Network grows organically.
Result: Coverage expands automatically. Verification evolves with system.
class AutoObserverDiscoveryEngine:
"""Automatically discovers and synthesizes new observers from failures"""
def __init__(self, observer_network):
self.network = observer_network
self.failure_history = []
self.discovered_observers = []
def process_failure(self, failure_case, verification_results, deployment_results):
"""Main entry point: failure detected, process it"""
# Phase 1: Detect gap
gap = self.detect_gap(verification_results, deployment_results)
if not gap['detected']:
return {'action': 'no_gap', 'result': 'verification_or_deployment_error'}
# Phase 2: Analyze gap
analysis = self.analyze_gap(
failure_case=failure_case,
observer_results=verification_results,
system_state=self.network.get_state()
)
if analysis['type'] == 'observer_bug':
# Existing observer failed - fix it
return self.fix_observer_bug(analysis)
# Phase 3: Synthesize new observer
new_observer = self.synthesize_observer(analysis['missing_domain'])
if new_observer['status'] != 'ready':
return {'action': 'synthesis_failed', 'error': new_observer['error']}
# Phase 4: Integrate
integration = self.integrate_observer(
new_observer=new_observer['observer_code'],
network=self.network
)
if integration['status'] != 'integrated':
return {'action': 'integration_failed', 'error': integration['error']}
# Phase 5: Deploy
self.deploy_expanded_network(integration['network'])
# Record discovery
self.discovered_observers.append({
'observer': new_observer,
'failure_case': failure_case,
'timestamp': now(),
'observer_id': integration['observer_id']
})
return {
'action': 'observer_discovered',
'observer_id': integration['observer_id'],
'observer_name': new_observer['metadata']['name'],
'network_size': len(self.network.observers)
}
def detect_gap(self, verification_results, deployment_results):
"""Phase 1: Detect if gap exists"""
verification_passed = all(r['passed'] for r in verification_results)
deployment_passed = deployment_results['passed']
if verification_passed and not deployment_passed:
return {
'detected': True,
'reason': 'verification_missed_real_failure',
'failure_details': deployment_results['failure']
}
else:
return {'detected': False}
def analyze_gap(self, failure_case, observer_results, system_state):
"""Phase 2: Analyze what domain is missing"""
# Classify failure
failure_taxonomy = self.classify_failure(failure_case)
# Extract domain
failure_domain = self.extract_domain(failure_taxonomy)
# Check coverage
covered_domains = [obs['domain'] for obs in observer_results]
# Find gap
if failure_domain not in covered_domains:
# Pure gap - no observer covers this
return {
'type': 'coverage_gap',
'missing_domain': failure_domain,
'action': 'synthesize_new_observer',
'confidence': self.calculate_confidence(failure_case, covered_domains)
}
else:
# Observer exists but failed - it's buggy
responsible = [obs for obs in observer_results if obs['domain'] == failure_domain]
return {
'type': 'observer_bug',
'observers': responsible,
'action': 'fix_existing_observers',
'bug_details': self.diagnose_bug(responsible, failure_case)
}
def classify_failure(self, failure_case):
"""Classify failure into taxonomy"""
failure_type = failure_case['type']
taxonomy = {
'visual': ['color', 'position', 'size', 'visibility', 'z-order'],
'structural': ['topology', 'connectivity', 'hierarchy'],
'temporal': ['timing', 'sequence', 'synchronization'],
'logical': ['correctness', 'consistency', 'completeness'],
'semantic': ['meaning', 'intent', 'context']
}
# Classify failure into taxonomy
for category, subcategories in taxonomy.items():
for subcategory in subcategories:
if subcategory in failure_case['description'].lower():
return {
'category': category,
'subcategory': subcategory,
'domain': f"{category}_{subcategory}"
}
# Unknown - create new category
return {
'category': 'unknown',
'subcategory': 'new',
'domain': self.infer_domain(failure_case)
}
def extract_domain(self, taxonomy):
"""Extract domain specification from taxonomy"""
return taxonomy['domain']
def synthesize_observer(self, missing_domain):
"""Phase 3: Generate new observer code"""
# Generate observer specification
spec = self.generate_observer_spec(missing_domain)
# Generate code from spec
code = self.generate_code(spec)
# Generate tests
tests = self.generate_tests(spec)
# Verify generated observer
if self.test_observer(code, tests):
return {
'status': 'ready',
'observer_code': code,
'tests': tests,
'metadata': spec
}
else:
return {
'status': 'synthesis_failed',
'error': 'generated observer failed validation'
}
def generate_observer_spec(self, domain):
"""Generate specification for observer in this domain"""
# Domain → Name
name = self.domain_to_name(domain)
# Domain → Checks
checks = self.domain_to_checks(domain)
# Domain → Detection methods
methods = self.domain_to_methods(domain)
return {
'name': name,
'domain': domain,
'checks': checks,
'methods': methods,
'template': self.select_template(domain)
}
def generate_code(self, spec):
"""Generate Python class code from specification"""
template = self.get_template(spec['template'])
code = template.render(
name=spec['name'],
domain=spec['domain'],
checks=spec['checks'],
methods=spec['methods']
)
return code
def generate_tests(self, spec):
"""Generate test cases for the observer"""
tests = []
# Test 1: Should catch original failure
tests.append({
'name': 'test_catches_original_failure',
'input': self.failure_history[-1]['failure_case'],
'expected': {'passed': False, 'issues': [...]},
})
# Test 2: Should pass on valid cases
tests.append({
'name': 'test_passes_valid_cases',
'input': self.generate_valid_case(spec['domain']),
'expected': {'passed': True, 'issues': []},
})
# Test 3: Edge cases
for edge_case in self.generate_edge_cases(spec['domain']):
tests.append({
'name': f'test_edge_case_{edge_case["name"]}',
'input': edge_case['input'],
'expected': edge_case['expected']
})
return tests
def test_observer(self, code, tests):
"""Run tests on generated observer"""
# Execute code (safely sandboxed)
observer_class = self.safe_exec(code)
observer = observer_class()
# Run tests
for test in tests:
result = observer.verify(test['input'])
if result != test['expected']:
return False
return True
def integrate_observer(self, new_observer, network):
"""Phase 4: Add observer to network"""
# Check conflicts
for existing in network.observers:
if self.domain_overlaps(new_observer.domain, existing.domain):
# Merge or specialize
return self.handle_conflict(new_observer, existing, network)
# Assign ID
observer_id = len(network.observers) + 1
new_observer.set_id(observer_id)
# Add to network
network.observers.append(new_observer)
# Test integration
if self.test_network_integration(network):
return {
'status': 'integrated',
'network': network,
'observer_id': observer_id
}
else:
# Rollback
network.observers.pop()
return {
'status': 'integration_failed',
'error': 'network tests failed after integration'
}
def deploy_expanded_network(self, network):
"""Phase 5: Deploy expanded network"""
# Update network reference
self.network = network
# Persist to disk
self.save_network(network)
# Log discovery
self.log_discovery(network.observers[-1])
return {'status': 'deployed'}
def domain_to_name(self, domain):
"""Convert domain to observer name"""
words = domain.split('_')
name = ''.join(w.capitalize() for w in words) + 'Observer'
return name
def domain_to_checks(self, domain):
"""Infer checks from domain"""
# Domain-specific logic
checks_map = {
'temporal_sequence': ['drawing_order', 'z_index', 'depth_hierarchy'],
'spatial_overlap': ['collision_detection', 'boundary_checking'],
'semantic_consistency': ['pattern_matching', 'rule_verification'],
# ... more domains
}
return checks_map.get(domain, ['generic_validation'])
def domain_to_methods(self, domain):
"""Infer detection methods from domain"""
# Generate method signatures
methods = []
for check in self.domain_to_checks(domain):
methods.append({
'name': f'check_{check}',
'signature': f'def check_{check}(self, elements):',
'body': self.generate_method_body(check)
})
return methods
Usage:
# Initialize
network = ObserverNetwork([Observer1(), Observer2(), ..., Observer7()])
discovery_engine = AutoObserverDiscoveryEngine(network)
# Create something
svg = create_svg()
# Verify with current network
verification_results = network.verify(svg)
# Deploy
deploy_results = deploy(svg)
# If failure despite verification passing
if verification_results.passed and not deploy_results.passed:
# Auto-discover new observer
result = discovery_engine.process_failure(
failure_case=deploy_results.failure,
verification_results=verification_results,
deployment_results=deploy_results
)
if result['action'] == 'observer_discovered':
print(f"✓ Discovered Observer #{result['observer_id']}: {result['observer_name']}")
print(f"✓ Network expanded to {result['network_size']} observers")
Result: Automated observer synthesis. System evolves itself.
Apply to Post 777 failure:
# Failure case
failure = {
'type': 'visual_obscured',
'description': 'Title text covered by fusion panel',
'details': {
'element': 'title text',
'drawn_at': 'position 4',
'covered_by': 'fusion panel',
'covered_at': 'position 5',
'reason': 'later-drawn element overlaps earlier'
}
}
# Verification results (7 observers, all passed)
verification = [
{'observer': 'SpacingChecker', 'passed': True},
{'observer': 'OverlapDetector', 'passed': True}, # Detected overlap but not z-order issue
{'observer': 'AestheticEvaluator', 'passed': True},
{'observer': 'ConsistencyVerifier', 'passed': True},
{'observer': 'AccessibilityAuditor', 'passed': True},
{'observer': 'MathValidator', 'passed': True},
{'observer': 'PatternAnalyzer', 'passed': True}
]
# Deployment failed
deployment = {
'passed': False,
'failure': failure
}
# Run auto-discovery
result = discovery_engine.process_failure(failure, verification, deployment)
# Output:
{
'action': 'observer_discovered',
'observer_id': 8,
'observer_name': 'LayerOrderObserver',
'network_size': 8,
'synthesis_details': {
'detected_gap': 'temporal_sequence',
'generated_checks': ['drawing_order', 'z_index', 'depth_hierarchy'],
'test_results': 'all_passed',
'integration_status': 'successful'
}
}
System automatically:
No human intervention. Fully automated.
Traditional: Coverage is fixed. New bug types slip through forever.
Auto-discovery: Each new bug type teaches the system. Coverage expands automatically.
Result: Verification quality improves with system complexity instead of degrading.
Traditional: Must anticipate all possible checks upfront. Impossible.
Auto-discovery: Start with minimal observers. Let usage reveal what’s missing. System fills gaps.
Result: Can deploy verification before fully understanding the system.
Not just adding observers. System can merge redundant observers or split overly broad observers.
Example: If two observers cover overlapping domains, merge them. If one observer tries to check too many things, split it.
Result: Network topology self-optimizes.
The discovery engine itself can be observed. If discovery fails, discover why, synthesize fix.
Recursive self-improvement: The system that improves the system can improve itself.
Observer Discovery:
Meta Concepts:
Implementation:
Code:
Failure → Detect gap → Analyze domain → Synthesize observer → Integrate → Deploy → Loop
Fully automated. No human required. System evolves itself through usage.
AutoObserverDiscoveryEngine class implements the full protocol:
Self-evolving verification. Coverage expands automatically. Each failure teaches the system what to watch for. Network grows organically. Blind spots surface and fill themselves.
Post 778 showed observers can discover observers (manual).
Post 779 (this) shows how to automate it (protocol + code).
Next: Observers discover how to improve discovery itself. Meta-meta-observation. Recursive self-improvement all the way up.
Automated synthesis.
Self-evolution through failure.
The system writes itself.
∞