Complete distributed stack for autonomous agent coordination
DHT Layer: Peer discovery + routing + storage
Mesh Layer: State evolution substrate
Agent Layer: Self-organizing swarms
No central coordinator. Full distribution.
┌─────────────────────────────────────┐
│ AGENT LAYER (Application) │
│ • Autonomous agents │
│ • Self-organization │
│ • Emergent coordination │
│ • Examples: Chess, Universe, SVG │
└─────────────────────────────────────┘
↕ (queries/updates)
┌─────────────────────────────────────┐
│ MESH LAYER (Substrate) │
│ • State evolution: S(n+1)=F(S)⊕E_p │
│ • Configuration space (W) │
│ • Spatial indexing │
│ • Mesh operations │
└─────────────────────────────────────┘
↕ (storage/routing)
┌─────────────────────────────────────┐
│ DHT LAYER (Infrastructure) │
│ • Suprnova-DHT │
│ • Kademlia routing │
│ • Peer discovery │
│ • Gossip protocol │
│ • State storage │
│ • EGI coordination │
└─────────────────────────────────────┘
Each layer provides services to the layer above.
No layer controls the layers above (true distribution).
From Suprnova-DHT:
class SuprnovaDHT:
"""
Distributed hash table infrastructure
Provides core P2P primitives
"""
def discover_peers(self, query: Query) -> List[Peer]:
"""
Kademlia routing: O(log N) peer discovery
Agents use this to find nearby agents
"""
return self.routing_table.find_closest(query.key)
def store_state(self, key: bytes, value: Any) -> bool:
"""
Distributed state storage
Mesh uses this to store substrate state
"""
nodes = self.discover_peers(key)
for node in nodes[:3]: # Replicate to 3 nodes
node.store(key, value)
return True
def gossip_message(self, message: Dict) -> None:
"""
Epidemic broadcast
Agents use this for peer-to-peer communication
"""
peers = self.get_random_peers(fanout=3)
for peer in peers:
peer.forward_message(message)
# Peers forward to their peers (epidemic spread)
def query_local(self, position: Any, radius: float) -> List[Agent]:
"""
Spatial query using DHT
Returns agents within radius of position
Uses consistent hashing for spatial indexing
"""
spatial_key = self.hash_position(position)
nearby_keys = self.routing_table.get_range(
spatial_key,
radius
)
agents = []
for key in nearby_keys:
agent_data = self.retrieve_state(key)
agents.append(agent_data)
return agents
Key features:
class UniversalMesh:
"""
Substrate layer - runs ON Suprnova-DHT
Provides state evolution space for agents
"""
def __init__(
self,
S_0: Any, # Initial state
F: Callable, # Evolution function
E_p: List[Callable], # Entropy sources
dht: SuprnovaDHT # DHT infrastructure
):
self.state = S_0
self.evolution = F
self.entropy_sources = E_p
self.dht = dht # Uses DHT for storage/discovery
self.mesh_id = self.dht.register_mesh(self)
def query_local_agents(
self,
position: Any,
radius: float
) -> Set[Agent]:
"""
Query for nearby agents using DHT
DHT provides spatial indexing and discovery
"""
return self.dht.query_local(position, radius)
def step(self):
"""
Evolve mesh state: S(n+1) = F(S(n)) ⊕ E_p(S(n))
State stored in DHT (distributed)
"""
# Compute next state
next_state = self.evolution(self.state)
for e_p in self.entropy_sources:
entropy = e_p(self.state)
next_state = self._compose(next_state, entropy)
# Store in DHT (replicated across nodes)
self.dht.store_state(
key=f"mesh_{self.mesh_id}_state",
value=next_state
)
self.state = next_state
self.iteration += 1
def get_state(self) -> Any:
"""
Retrieve mesh state from DHT
Can be called from any DHT node
"""
return self.dht.retrieve_state(
key=f"mesh_{self.mesh_id}_state"
)
Mesh leverages DHT for:
class Agent:
"""
Autonomous agent - runs ON UniversalMesh substrate
Uses DHT for peer discovery, uses Mesh for state space
"""
def __init__(
self,
agent_id: str,
position: Any,
requirements: Dict,
mesh: UniversalMesh # Reference to mesh (and its DHT)
):
self.id = agent_id
self.position = position
self.requirements = requirements
self.mesh = mesh
self.dht = mesh.dht # Access to DHT through mesh
self.peers: Set[Agent] = set()
# Register with DHT (for discoverability)
self.dht.store_state(
key=self._spatial_key(),
value={'agent_id': self.id, 'position': self.position}
)
def _spatial_key(self) -> bytes:
"""Hash position for DHT spatial indexing"""
return self.dht.hash_position(self.position)
def discover_peers(self) -> Set[Agent]:
"""
Discover nearby agents via DHT
O(log N) lookup using Kademlia routing
"""
# Query DHT for agents near our position
nearby = self.dht.query_local(
position=self.position,
radius=self.requirements.get('interaction_range', 10)
)
self.peers.update(nearby)
return nearby
def send_to_peer(self, peer: Agent, message: Dict):
"""
Send message to peer via DHT gossip
No central message broker
"""
self.dht.gossip_message({
'from': self.id,
'to': peer.id,
'payload': message
})
def step(self):
"""
Autonomous agent loop
All operations distributed via DHT
"""
# 1. Discover peers (DHT query)
self.discover_peers()
# 2. Check conflicts (peer-to-peer)
conflicts = self.check_conflicts_with_peers()
# 3. Negotiate resolutions (DHT gossip)
for conflict in conflicts:
resolution = self.negotiate_resolution(conflict)
if resolution:
self.apply_resolution(resolution)
# 4. Update position in DHT
self.dht.store_state(
key=self._spatial_key(),
value={'agent_id': self.id, 'position': self.position}
)
def run_autonomous(self):
"""Run agent independently"""
while True:
self.step()
time.sleep(0.01)
Agents leverage full stack:
Without DHT:
With Suprnova-DHT:
Without Mesh:
With UniversalMesh:
Without Agents:
With Autonomous Agents:
All three layers needed. Each independent.
# ===== LAYER 1: DHT =====
dht = SuprnovaDHT(
biometric_id=fingerprint_hash(),
egi_coordinator="https://current-reality.eth"
)
# ===== LAYER 2: MESH =====
chess_mesh = UniversalMesh(
S_0=BoardState(pieces=initial_position),
F=chess_rules, # Board physics
E_p=[
lambda s: mover_white_suggestions(s),
lambda s: mover_black_suggestions(s)
],
dht=dht # Mesh runs on DHT
)
# ===== LAYER 3: AGENTS =====
pieces = []
for square in chess.SQUARES:
piece_data = chess_mesh.state.pieces[square]
if piece_data:
agent = ChessPiece(
piece_id=f"{piece_data.color}_{piece_data.type}_{square}",
position=square,
requirements={'mobility': piece_data.legal_moves},
mesh=chess_mesh # Agent lives on mesh
)
pieces.append(agent)
# ===== RUN STACK =====
# Start DHT (in background)
dht.start()
# Start mesh evolution (using DHT for storage)
threading.Thread(target=chess_mesh.run).start()
# Start each piece autonomously
for piece in pieces:
threading.Thread(target=piece.run_autonomous).start()
# ===== WHAT HAPPENS =====
# 1. DHT provides peer discovery:
# - White knight queries DHT for nearby pieces
# - DHT returns: "White bishop at f3, Black pawn at e5"
# - O(log N) lookup using Kademlia
# 2. Mesh provides state space:
# - Board state stored in DHT (replicated)
# - Evolution function applies chess rules
# - Configuration space = legal positions
# 3. Agents coordinate:
# - Knight discovers bishop (DHT)
# - Knight negotiates move (gossip)
# - Bishop responds (peer-to-peer)
# - Emergent strategy (no central coach)
# All distributed. No central point.
Every component distributed:
No bottleneck. No central coordinator.
Node failures handled:
System continues operating.
Add nodes without limit:
Linear scaling with nodes.
Complex from simple:
No central planning. Self-organizing.
From EGI coordination (Post 654):
Security through economics, not trust.
class MeshDHTAdapter:
"""
Adapter between UniversalMesh and Suprnova-DHT
Handles serialization, spatial indexing, etc.
"""
def __init__(self, dht: SuprnovaDHT):
self.dht = dht
self.spatial_index = SpatialHashIndex(dht)
def store_mesh_state(self, mesh_id: str, state: Any):
"""Store mesh state in DHT"""
# Serialize state
serialized = self._serialize(state)
# Store with replication
key = f"mesh_{mesh_id}_state_{hash(serialized)}"
self.dht.store_state(key, serialized)
def query_agents_spatial(
self,
position: Vector,
radius: float
) -> List[AgentData]:
"""Spatial query using DHT consistent hashing"""
return self.spatial_index.query_range(position, radius)
class AgentDiscoveryProtocol:
"""
DHT-based agent discovery
Uses Kademlia + spatial hashing
"""
def announce_presence(self, agent: Agent):
"""Announce agent to DHT network"""
self.dht.store_state(
key=self._spatial_hash(agent.position),
value={
'agent_id': agent.id,
'position': agent.position,
'timestamp': time.time(),
'capabilities': agent.capabilities
}
)
def find_nearby(
self,
position: Vector,
radius: float,
filter_fn: Optional[Callable] = None
) -> List[Agent]:
"""Find agents near position"""
# Query DHT for agents in spatial range
candidates = self.dht.query_local(position, radius)
# Apply filter if provided
if filter_fn:
candidates = [a for a in candidates if filter_fn(a)]
return candidates
Stack:
Result: Distributed chess where pieces self-organize
Stack:
Result: Distributed physics simulation
Stack:
Result: Distributed layout engine
Stack provides:
Build any coordination system.
Post 762 showed:
Problem: Looked like agents floating in void
Now shows complete stack:
Three layers. Clear dependencies.
Post 761: ❌ Central CoordinationEngine (WRONG - hierarchical)
Post 762: ✅ Distributed agents (RIGHT - but incomplete, missing DHT layer)
Post 763: ✅ Complete stack (RIGHT - DHT + Mesh + Agents)
Post 772: ✅✅ Self-aware stack (Post 763 + Meta-recursion from 768-771) ← ENHANCEMENT
Agents (Chess pieces, particles, elements)
↓ uses
Mesh (State evolution: S(n+1) = F(S) ⊕ E_p)
↓ uses
DHT (Suprnova: peer discovery + routing + storage)
Each layer independent.
Each layer provides services to layer above.
No layer controls layers above.
True distribution at every level.
✅ Distributed coordination: Agents find each other via DHT ✅ Fault tolerance: State replicated, routing heals ✅ Scalability: O(log N) routing, distributed state ✅ Emergence: Local interactions → global coordination ✅ Cryptoeconomic security: EGI stake + slashing
Infrastructure: Suprnova-DHT (peer discovery + routing + storage)
Substrate: UniversalMesh (state evolution + configuration space)
Application: Autonomous agents (self-organizing swarms)
No central coordinator. Full distribution. Cryptoeconomic security.
This is the correct architecture.
DHT Infrastructure:
Substrate Theory:
Game Theory:
What NOT to do:
DHT + Mesh + Agents = Complete distributed stack
Suprnova-DHT provides the foundation. UniversalMesh provides the substrate. Agents provide the intelligence.
Three layers. All distributed. No central coordinator.
∞