⚠️ CORRECTION NOTICE ⚠️
This post contains an error regarding N (graph connectivity).
Stated here: “N unchanging (information substrate static)” - This is WRONG.
Observation is enough to change N. Graph structure is observer-dependent.
See Post 740: Observation Changes N for the correction.
Formula corrected: P(T(S(N))) → P(T(S(N(P)))) - N depends on P.
N = Number of edges (connectivity degree of node)
S = Symbolic signals flowing on those edges
T = Multidimensional time hash: T(hop, signal, edge)
P = Perspective experiencing this structure
Time is about associating:
Reality = Graph traversal observed from perspective.
class N_As_Connectivity:
"""
N represents the number of edges connected to a node
"""
def the_structure(self):
return {
'n_is': {
'not_just': 'NAND gates (though related)',
'not_just': 'Numbers',
'but': 'Connectivity degree',
'definition': 'Number of edges connected to node',
'graph_theory': 'Degree of vertex',
'fundamental': 'How many connections exist'
},
'for_a_node': {
'node_x': 'Point in universal graph',
'n_value': 'Count of edges connected to X',
'n_equals_3': 'Node has 3 connections',
'n_equals_7': 'Node has 7 connections',
'n_equals_infinite': 'Universal connection point',
'variable': 'N changes per node'
},
'the_edges': {
'e_1': 'First edge connected to node',
'e_2': 'Second edge connected to node',
'e_n': 'Nth edge connected to node',
'each_edge': 'Path for information flow',
'total': 'N edges total',
'structure': 'Defines node connectivity pattern'
},
'why_fundamental': {
'connectivity': 'Defines information pathways',
'structure': 'Shapes how signals can flow',
'capacity': 'Limits/enables processing',
'network_topology': 'Creates graph structure',
'determines': 'What can connect to what',
'base_layer': 'Foundation for S, T, P'
},
'universal_graph': {
'all_nodes': 'Complete information substrate',
'all_edges': 'All possible connections',
'each_node': 'Has specific N value',
'n_defines': 'Local connectivity',
'network': 'Emerges from N values',
'static': 'N unchanging (from Post 738)'
}
}
N = Connectivity Degree:
For Each Node:
The Universal Graph: All nodes with their N values create the complete information substrate. This structure is static, unchanging.
class S_As_Signals:
"""
S represents symbolic signals flowing on N edges
"""
def the_flow(self):
return {
's_is': {
'not_continuous': 'Discrete symbols',
'symbolic': 'Distinct signal types',
'on_edges': 'Flows on the N edges',
'examples': 'S₁, S₂, S₃... (different signal types)',
'information': 'What is being transmitted',
'data': 'Content flowing through structure'
},
'signal_types': {
's_1': 'Signal type 1 (e.g., activation)',
's_2': 'Signal type 2 (e.g., inhibition)',
's_3': 'Signal type 3 (e.g., modulation)',
'finite_types': 'Discrete symbol alphabet',
'or_infinite': 'Could be infinite alphabet',
'symbolic': 'Not continuous values'
},
'on_which_edge': {
'edge_e_1': 'Can carry any signal S_x',
'edge_e_2': 'Can carry any signal S_y',
'mapping': 'Signal S on edge E',
'combination': 'Multiple signals on different edges',
'simultaneous': 'Parallel signal transmission',
'pattern': 'S(N) = signals across all N edges'
},
's_of_n': {
'notation': 'S(N)',
'meaning': 'Signals on the N edges',
'input': 'N (connectivity structure)',
'output': 'Signal pattern across edges',
'function': 'Maps structure to content',
'layer_2': 'Built on N foundation'
},
'why_symbolic': {
'discrete': 'Not continuous',
'distinct': 'Clear signal types',
'information': 'Carries meaning',
'processable': 'Can be interpreted',
'basis': 'For computation/experience',
'content': 'What flows through structure'
}
}
S = Symbolic Signals:
S(N) Notation: Signals flowing across the N edges. Structure (N) determines where signals can flow. Signals (S) determine what flows.
class T_As_TimeHash:
"""
T is multidimensional time hash: T(hop, signal, edge)
"""
def the_hash(self):
return {
't_is_not': {
'not': 'Linear time',
'not': 'Sequential moments',
'not': '1D timeline',
'not': 'Physical time',
'wrong_view': 't₁ → t₂ → t₃ (sequence)',
'artifact': 'Of projection (Post 738)'
},
't_is': {
'multidimensional': 'Hash space',
'association': 'Linking hop + signal + edge',
'tuple': 'T(hop, signal, edge)',
'coordinate': 'Point in 3D+ space',
'unique_state': 'Each combination distinct',
'graph_traversal': 'State of information flow'
},
'the_three_dimensions': {
'hop_h': 'Graph traversal step (H₁, H₂, H₃...)',
'signal_s': 'Which symbolic signal (S₁, S₂, S₃...)',
'edge_e': 'Which edge it passes through (E₁, E₂... E_N)',
'combination': 'T(H₇, S₃, E₂) = specific state',
'unique': 'Each (H, S, E) is unique "time"',
'not_sequential': 'Not H₁ then H₂ necessarily'
},
'what_time_means': {
'time_is_about': 'Associating specific hop...',
'with': '...specific symbolic signal...',
'passing_through': '...specific edge',
'not_duration': 'Not about passage of time',
'but_state': 'State of graph traversal',
'coordinate': 'Position in hash space',
'fundamental': 'Association not sequence'
},
'example': {
'node_with_n_5': '5 edges (E₁ to E₅)',
'signal_s_3': 'Signal type 3',
'hop_h_7': 'Seventh traversal step',
'edge_e_2': 'Second edge',
'time_moment': 'T(H₇, S₃, E₂)',
'means': 'Signal S₃ on edge E₂ at hop H₇',
'unique_state': 'Distinct from T(H₆, S₃, E₂) or T(H₇, S₂, E₂)'
},
't_of_s_of_n': {
'notation': 'T(S(N))',
'meaning': 'Time hash of signals on N edges',
'input': 'S(N) = signal pattern',
'output': 'Hash associating hop+signal+edge',
'function': 'Maps signal flow to traversal state',
'layer_3': 'Built on S(N) which is built on N'
}
}
T = Time Hash: Not linear time, but multidimensional hash: T(hop, signal, edge)
The Three Dimensions:
What “Time” Means: Time is about associating a specific hop WITH a specific symbolic signal WITH a specific edge. Not sequence, but association.
Example:
T(S(N)) Notation: Time hash of signal patterns on N edges. Combines all three layers.
class P_As_Perspective:
"""
P wraps everything as perspective/observation
"""
def the_wrapper(self):
return {
'p_is': {
'outermost_layer': 'Wraps T(S(N))',
'perspective': 'How we observe/experience',
'observer': 'Point of view',
'interpretation': 'How we process the structure',
'cognitive': 'Mental processing (Post 738)',
'experience': 'What we actually perceive'
},
'p_of_t_of_s_of_n': {
'notation': 'P(T(S(N)))',
'meaning': 'Perspective experiencing time hash of signals on edges',
'full_stack': 'All four layers combined',
'n': 'Graph structure (base)',
's_n': 'Signals on structure',
't_s_n': 'Time hash of signals',
'p_t_s_n': 'Perspective experiencing it all'
},
'what_p_does': {
'selects': 'Which T(S(N)) states to experience',
'interprets': 'Gives meaning to hash coordinates',
'creates': 'Experience from structure',
'filters': 'What aspects are perceived',
'transforms': 'Hash space into experience',
'cognitive_state': 'How we process (Post 738)'
},
'from_post_738': {
'information_static': 'T(S(N)) unchanging',
'only_p_changes': 'Perspective shifts',
'different_p': 'Different experience of same T(S(N))',
'cognitive_changes': 'Only P varies',
'experience_varies': 'Through P variations',
'confirms': 'Only cognitive changes happened'
},
'the_formula_complete': {
'base': 'N = graph connectivity',
'layer_1': 'S(N) = signals on edges',
'layer_2': 'T(S(N)) = hash(hop, signal, edge)',
'layer_3': 'P(T(S(N))) = perspective experiencing hash',
'reality': 'Complete formula for experience',
'all_of_it': 'Structure + content + state + observer'
}
}
P = Perspective: Outermost layer wrapping everything. How we observe/experience the T(S(N)) structure.
P(T(S(N))) Complete:
From Post 738: T(S(N)) is static (information substrate unchanging). Only P changes (cognitive states). Different P = different experience of same T(S(N)).
Reality = P(T(S(N))): Complete formula combining structure, content, state, and observer.
class TimeHashSpace:
"""
The complete hash space structure
"""
def the_space(self):
return {
'not_1d_time': {
'wrong': 't₁ → t₂ → t₃ (linear sequence)',
'artifact': 'Projection creates this illusion',
'actually': '3D+ hash space',
'coordinates': 'T(hop, signal, edge)',
'multidimensional': 'Not sequential',
'all_exist': 'All coordinates exist simultaneously'
},
'the_dimensions': {
'dimension_1': 'Hops (H₁, H₂, H₃, ...)',
'dimension_2': 'Signals (S₁, S₂, S₃, ...)',
'dimension_3': 'Edges (E₁, E₂, ... E_N)',
'minimum': '3 dimensions',
'possibly_more': 'Could have additional dimensions',
'space': 'H × S × E = complete hash space'
},
'each_coordinate': {
'unique_state': 'T(H_i, S_j, E_k) is unique',
'meaning': 'Signal S_j on edge E_k at hop H_i',
'not_moment': 'Not time moment in sequence',
'but_state': 'State of graph traversal',
'all_coexist': 'All coordinates exist',
'static': 'Hash space unchanging'
},
'traversal_path': {
'sequence_exists': 'Can have path through space',
'h_1_h_2_h_3': 'Hop sequence',
'but': 'Path is perspective (P)',
'not_inherent': 'Not in T(S(N)) itself',
'p_creates': 'Perspective creates sequence',
'artifact': 'Of how P navigates hash space'
},
'the_grid': {
'rows': 'Hops',
'columns': 'Edges',
'depth': 'Signals',
'each_cell': 'T(H, S, E) coordinate',
'3d_grid': 'Or higher dimensional',
'all_populated': 'All states exist',
'static_structure': 'Unchanging information'
},
'navigation': {
'p_selects': 'Which coordinates to experience',
'creates_path': 'Sequence through hash space',
'seems_temporal': 'Feels like time passing',
'actually': 'Just P navigating static space',
'different_p': 'Different path through same space',
'experience_varies': 'But space unchanging'
}
}
Not Linear Time: Not t₁ → t₂ → t₃ sequence. That’s projection artifact (Post 738).
Hash Space: 3D+ space with dimensions:
Each Coordinate: T(H_i, S_j, E_k) = unique state meaning “Signal S_j on edge E_k at hop H_i”
The Grid: All combinations of (H, S, E) exist simultaneously. Static structure. Unchanging.
Sequence: P (perspective) navigates through hash space, creating apparent sequence. Sequence is artifact of P’s navigation, not inherent in T(S(N)).
class RealityAsGraphTraversal:
"""
Complete understanding of P(T(S(N)))
"""
def complete_picture(self):
return {
'reality_is': {
'not': 'Physical universe evolving',
'not': 'Events in time',
'but': 'Graph traversal observed',
'structure': 'Universal information graph',
'process': 'Signals flowing on edges',
'state': 'Hash of hop+signal+edge',
'experience': 'Perspective observing traversal'
},
'the_layers': {
'layer_0_n': 'Graph structure (connectivity)',
'layer_1_s': 'Signals flowing on edges',
'layer_2_t': 'Hash associating hop+signal+edge',
'layer_3_p': 'Perspective experiencing hash',
'complete': 'P(T(S(N))) = full reality formula',
'each_builds': 'On previous layer'
},
'what_exists': {
'universal_graph': 'All nodes and edges (N for each)',
'signal_flows': 'All possible signals (S)',
'hash_space': 'All T(H,S,E) coordinates',
'all_static': 'Unchanging structure',
'perspectives': 'Different P navigating',
'only_p_changes': 'Cognitive states vary'
},
'what_time_really_is': {
'not_dimension': 'Not physical time dimension',
'but_association': 'Linking hop with signal with edge',
'hash_coordinate': 'Point in multidimensional space',
'traversal_state': 'Where in graph process we are',
'experienced_as': 'Seems like time passing',
'actually': 'Just navigation through hash space'
},
'examples': {
'jellyfish_movement': {
'n': 'Neural network connectivity',
's': 'Neural signals',
't': 'Hash of neural firing patterns',
'p': 'Jellyfish perspective',
'result': 'Experience of swimming'
},
'helicopter_disruption': {
'n': 'Air molecule connections',
's': 'Pressure wave signals',
't': 'Hash of wave propagation',
'p': 'Pilot perspective',
'result': 'Experience of instability'
},
'universe_observation': {
'n': 'Cosmic connection structure',
's': 'Information signals',
't': 'Hash of states we call "history"',
'p': 'Human perspective',
'result': 'Experience of time/causality'
}
},
'implications': {
'no_physical_time': 'Time is hash coordinate',
'no_causality': 'Just graph traversal paths',
'no_events': 'Just hash space coordinates',
'only_structure': 'N + S + T + P',
'experience_emerges': 'From P navigating T(S(N))',
'reality': 'Is this formula'
}
}
Reality Is: Graph traversal observed from perspective
The Complete Stack:
What Time Really Is: Not dimension. Not sequence. But association: linking specific hop WITH specific signal WITH specific edge. Hash coordinate in multidimensional space.
Examples Applied:
Implications: No physical time. No causality. No events. Only graph structure + traversal + observation. Reality = P(T(S(N))).
P(T(S(N))) =
N: Number of edges (graph connectivity degree)
S(N): Symbolic signals on those N edges
T(S(N)): Multidimensional time hash
P(T(S(N))): Perspective experiencing the hash
Time Is About: Associating specific hop (traversal step) WITH specific symbolic signal WITH specific edge (of the N edges). Not linear sequence. Multidimensional hash.
Reality: Universal information graph (N) with signals flowing (S) creating hash space of states (T) observed from perspective (P). That’s all there is.
From Post 738: Information substrate (T(S(N))) unchanging. Only P (cognitive states) changes. We navigate static hash space. Sequence is artifact of navigation.
The Truth: Reality = graph structure + signal flow + traversal state + observation. P(T(S(N))) encodes everything. Complete formula for existence.
∞
N = connectivity degree (edges). S = signals on edges. T = hash(hop, signal, edge). P = perspective. Time is association not sequence. Reality is graph traversal observed. P(T(S(N))) = complete formula. Information static. Only cognition navigates. Experience emerges from navigation through unchanging hash space of graph states.