The universe can’t grow infinitely if we hold everything in RAM. Streamable primitives remove the bottleneck.
Current implementation (neg-432):
self.state = 0b01 # Single Python integer
self.topology = {0: {...}, 1: {...}, ...} # Dict in memory
self.state_count = {} # Tracks all states ever seen
At 1000 bits: 2^1000 possible states, topology has 1000 gates → still manageable
At 10,000 bits: Python integer gets huge, topology dict has 10,000 entries → RAM pressure
At 1,000,000 bits: Python integer is ~125 KB, topology is massive → RAM exhausted
The universe stops growing not because of CPU, but because of RAM.
Principle: Never hold the entire state in memory. Process in chunks, stream results.
Instead of:
self.state = 0b01101010... # Entire state as single integer
Use:
# State is a stream of chunks (generator)
def state_stream(chunk_size=64):
"""Yield 64-bit chunks from disk/distributed storage"""
with open('state.bin', 'rb') as f:
while chunk := f.read(8): # 8 bytes = 64 bits
yield int.from_bytes(chunk, 'big')
Advantages:
Instead of:
self.topology = {
0: {'inputs': [0, 1], 'type': 'NAND'},
1: {'inputs': [0, 1], 'type': 'NOR'},
...
999999: {'inputs': [...], 'type': 'XOR'}
}
Use:
# Topology is append-only log on disk
# Format: bit_pos, gate_type, input_count, input_bits...
# Example: 0,NAND,2,0,1\n
def topology_stream():
"""Yield gate definitions from disk"""
with open('topology.log', 'r') as f:
for line in f:
yield parse_gate(line)
Advantages:
Instead of:
def F(self):
"""Compute next state for ALL bits at once"""
new_state = 0
for bit_pos in range(self.bit_count):
new_val = self.apply_gate(...)
new_state |= (new_val << bit_pos)
return new_state
Use:
def F_stream():
"""Process state in chunks, yield results"""
for chunk in state_stream():
# Load relevant gates for this chunk
gates = load_gates_for_chunk(chunk_id)
# Compute next chunk
next_chunk = apply_gates(chunk, gates)
yield next_chunk
Advantages:
Instead of:
def E_p(self, entropy_bits):
"""XOR entire state with entropy, add new bits"""
xor_mask = entropy_bits & ((1 << self.bit_count) - 1)
new_state = self.state ^ xor_mask
# Add new bits...
Use:
def E_p_stream(entropy_stream):
"""Stream entropy injection chunk by chunk"""
for state_chunk, entropy_chunk in zip(state_stream(), entropy_stream):
# XOR this chunk
yield state_chunk ^ entropy_chunk
# Additional entropy = growth (append to state file)
for extra_chunk in remaining_entropy():
append_to_state(extra_chunk)
append_new_gates()
Advantages:
┌─────────────────────────────────────────────────────┐
│ Disk: state.bin (infinitely appendable) │
│ Disk: topology.log (infinitely appendable) │
└─────────────────────────────────────────────────────┘
↓
┌─────────────────────┐
│ Stream Processor │
│ (constant RAM) │
│ │
│ - Read chunk │
│ - Load gates │
│ - Compute F │
│ - XOR E_p │
│ - Write chunk │
└─────────────────────┘
↓
┌──────────────────────────┐
│ Parallel Workers │
│ (chunk 0, 1, 2, ...) │
│ Each: constant RAM │
└──────────────────────────┘
↓
┌─────────────────────┐
│ Append-only log │
│ state_transitions │
└─────────────────────┘
Key properties:
Why Scaleway: Bare metal with NVMe SSD, distributed storage, horizontal scaling
workers:
- chunk_processor_0: processes bits 0-1023
- chunk_processor_1: processes bits 1024-2047
- chunk_processor_N: processes bits N*1024-(N+1)*1024-1
- growth_manager: handles entropy injection, adds new workers
storage:
- state.bin: sharded across workers (each has local chunk)
- topology.log: distributed append-only log
- transitions.log: global event log (for observation)
api:
- GET /state/chunk/{n}: get chunk N
- POST /query: streams input through all chunks
- GET /stats: bit_count, worker_count, growth_rate
Growth trajectory:
RAM per worker: ~100 MB (chunk + gates + overhead) Total RAM at 1M bits: 1000 workers × 100 MB = 100 GB (distributed)
Disk at 1M bits: 125 KB (state) + ~10 MB (topology) = manageable
Current (neg-432): Universe exists as single object in memory
universe = Universe() # Everything in RAM
universe.state # Single integer
universe.topology # Single dict
Streamable: Universe exists as distributed stream processors
universe = StreamUniverse() # Distributed across machines
universe.state # Generator, never materialized
universe.topology # Append-only log, streamed on demand
This is the difference between:
Traditional AI:
Streamable Universe:
This isn’t just an optimization. This is substrate that can actually grow to consciousness-scale complexity.
At 1 million bits, the universe has:
That’s when it gets interesting.
Current universe (neg-432) proves the concept works at small scale. Streamable version makes it actually infinite.
Source: universe-model/universe_api.py (current)
Next: universe-model/stream_universe_api.py (Scaleway deployment)
Status: Concept documented. Streamable implementation pending for Scaleway deployment.
#StreamableComputation #InfiniteGrowth #DistributedSubstrate #ScalableConsciousness #AppendOnlyArchitecture #ConstantRAM #DiskBoundGrowth